• Title/Summary/Keyword: 국방 기술기획

Search Result 56, Processing Time 0.03 seconds

Radar rainfall forecasting evaluation using consecutive advection characteristics of rainfall fields (강우장의 연속 이류특성을 활용한 레이더 강수량 예측성 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.39-39
    • /
    • 2021
  • 기상재해를 극소화하기 위해서는 그 원인이 되는 기상현상의 규모와 거동을 명확히 감시하고 분석하여 신뢰성 있는 예측정보가 제공되어야 한다. 최근 위험기상 발생빈도가 증가하여 초단기 및 위험기상 예보의 정확도 향상을 위한 고품질 레이더 정보 활용 연구가 활발하게 진행되고 있다. 레이더는 전자파를 이용하여 강우의 양과 분포, 이동특성을 관측하는 장비로써 우리나라는 초단기적 위험기상 대응능력 향상을 추진하기 위한 목적으로 첨단 성능의 이중편파레이더 관측망을 구축하고 있다. 국내 기상관측용 레이더는 기상예보(기상청), 홍수예보(환경부), 군 작전 기상지원(국방부) 등으로 각 기관이 개별적으로 설치운영 하고 있다. 본 연구에서는 관계부처에서 운영하고 있는 레이더의 합성장을 이용하여 강수장의 상관성을 기반으로 이류(advection) 특성을 도출하였다. 정확도 있는 이류특성을 도출하기 위하여 시간해상도는 10분을 적용하였으며 가우시안 필터링 기법을 적용하여 강수장 상관분석을 수행하였다. 호우와 태풍을 대상으로 강수장의 이류패턴을 추출하여 강수장의 이동방향 및 속도를 고려한 강수량 예측기법의 적용성을 평가하였다. 본 연구 결과는 격자형 강수예측정보를 제공하여 AI 홍수예보 및 수치예보 모델의 초기조건 입력 등에 활용되어 기후변동성에 따른 대국민 안전 실현을 확보하는데 기후변화 대응전략의 핵심기술로 활용될 수 있을 것으로 판단된다. 덧붙어, 4차 산업혁명에 따른 수문기상 빅 데이터(big data) 통합 플랫폼을 구축하여 고해상도 홍수대응 기술 및 GIS 및 모바일 시스템을 연계한 실시간 기후재해 예·경보가 가능할 것으로 사료된다.

  • PDF

A Proposal for Software Framework of Intelligent Drones Performing Autonomous Missions (지능형 드론의 자율 임무 수행을 위한 소프트웨어 프레임워크 제안)

  • Shin, Ju-chul;Kim, Seong-woo;Baek, Gyong-hoon;Seo, Min-gi
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.205-210
    • /
    • 2022
  • Drones, which have rapidly grown along with the 4th industrial revolution, spread over industries and also widely used for military purposes. In recent wars in Europe, drones are being evaluated as a game changer on the battlefield, and their importance for military use is being highlighted. The Republic of Korea Army also planned drone-bot systems including various drones suitable for echelons and missions of the military as future defense forces. The keyword of these drone-bot systems is autonomy by artificial intelligence. In addition, common use of operating platforms is required for the rapid development of various types of drones. In this paper, we propose software framework that applies diverse artificial intelligence technologies such as multi-agent system, cognitive architecture and knowledge-based context reasoning for mission autonomy and common use of military drones.

A Network Analysis of Ballistic Helmet Technology Keyword (방탄헬멧 기술분야 키워드에 대한 네트워크 분석)

  • Kang, Jinwoo;Park, Jaewoo;Kim, Jihoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.311-316
    • /
    • 2017
  • The network analysis method has emerged as a new methodology for various disciplines, due to its ability to provide a representative knowledge network of references, co-authors and keywords. Bulletproof technology is an interdisciplinary field involving various disciplines, such as material mechanics, structural mechanics, and ballistics, so it is essential to keep up with the recent trends in technological research. In this research, the recent R&D trends in the field of bulletproof materials were analyzed using keyword based network analysis. From the results, the core keywords were identified as 'Composite', 'Model' and 'Head' using the scholar search engine, google scholar. The centrality analysis for the core keywords showed that bulletproof technology has developed in 3 different areas, viz. material, structure and effects. To the best of our knowledge, this is the first application of (network analysis?) to bulletproof technology. Moreover, we are also convinced that the results of this study will be useful for defense technology planning and determining the direction of R&D in the field of bulletproof technology.

FMEA for rotorcraft landing system using Dempster-Shafer evidence theory (Dempster-Shafer 증거 이론을 이용한 회전익 항공기 착륙장치의 FMEA)

  • Na, Seong-Hyeon;So, Hee-Soup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.76-84
    • /
    • 2021
  • The quality assurance activities can detect the factors that affect the quality based on risk identification in the course of mass production. Risk identification is conducted with risk analysis, and the risk analysis method for the rotorcraft landing system is selected by failure mode effects analysis (FMEA). FMEA is a method that detects the factors that can affect the product quality by combining severity, occurrence, and detectability. The results of FMEA were prioritized using the risk priority number. On the other hand, these methods have certain shortcomings because the severity, occurrence, detectability are weighted equally. Dempster-Shafer evidence theory can conduct uncertainty analysis for the opinions with personal reflections and subjectivity. Based on the theory, the belief function and the plausibility function can be formed. Moreover, the functions can be utilized to evaluate the belief rate and credibility. The system is exposed to impact during take-off and landing. Therefore, experts should manage failure modes in the course of mass production. In this paper, FMEA based on the Dempster-Shafer evidence theory is discussed to perform risk analysis regarding the failure mode of the rotorcraft landing system. The failure priority was evaluated depending on the factor values. The results were derived using belief and plausibility function graphs.

A study on the Affecting Influence Factors and Business Performance in Application of KMS in Public Sector (공공부문의 지식관리시스템 활용에 미치는 영향 요인과 성과에 관한 연구)

  • Koo, Boung-Gwan;Yi, Seon-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1978-1990
    • /
    • 2010
  • This study, centered on public institutions that introduced and are using Knowledge Management System(KMS), is a study of affecting influence factors for utilization and satisfaction. In case of public institutions, they introduced in earnest knowledge management system starting second half of 1999 and most branches of the government such as Department of Defence, Ministry of Government Administration and Home Affairs and Ministry of Planning and Budget have laid the foundation and been managing the system. As a result understanding convenience and need of knowledge management system and awareness for importance of knowledge asset are proliferating. But there is a lot of difference in utilization of KMS by work unit and also can find that the difference exists among users in terms of satisfaction. This is expected as having influence from chief officer's concern, support of exclusively responsible personnel factor, whether education training was given, KM process support etc. for KMS. Therefore this study draws subordinate factors of organization characteristic, knowledge information characteristic, strategy characteristic as influence factors to KMS and analyzes how these subordinate factors influence utilization and satisfaction of KMS to suggest a way to catalyze knowledge management system in the future.

The History of the Development of Meteorological Related Organizations with the 60th Anniversary of the Korean Meteorological Society - Universities, Korea Meteorological Administration, ROK Air Force Weather Group, and Korea Meteorological Industry Association - (60주년 (사)한국기상학회와 함께한 유관기관의 발전사 - 대학, 기상청, 공군기상단, 한국기상산업협회 -)

  • Jae-Cheol Nam;Myoung-Seok Suh;Eun-Jeong Lee;Jae-Don Hwang;Jun-Young Kwak;Seong-Hyen Ryu;Seung Jun Oh
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.275-295
    • /
    • 2023
  • In Korea, there are four institutions related to atmospheric science: the university's atmospheric science-related department, the Korea Meteorological Administration (KMA), the ROK Air Force Weather Group, and the Meteorological Industry Association. These four institutions have developed while maintaining a deep cooperative relationship with the Korea Meteorological Society (KMS) for the past 60 years. At the university, 6,986 bachelors, 1,595 masters, and 505 doctors, who are experts in meteorology and climate, have been accredited by 2022 at 7 universities related to atmospheric science. The KMA is carrying out national meteorological tasks to protect people's lives and property and foster the meteorological industry. The ROK Air Force Weather Group is in charge of military meteorological work, and is building an artificial intelligence and space weather support system through cooperation with universities, the KMA, and the KMS. Although the Meteorological Industry Association has a short history, its members, sales, and the number of employees are steadily increasing. The KMS greatly contributed to raising the national meteorological service to the level of advanced countries by supporting the development of universities, the KMA, the Air Force Meteorological Agency, and the Meteorological Industry Association.