• 제목/요약/키워드: 국립해양조사원

Search Result 114, Processing Time 0.029 seconds

Establishment of a Dynamic Factor Prediction Module for Risk Assessment in Coastal Activity Sites (연안활동장소 위험도 평가를 위한 동적요소 예측 모듈 구축)

  • Young Jae Yoo;Dong Soo Jeon;Won Kyung Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.5
    • /
    • pp.95-101
    • /
    • 2023
  • Recent persistent coastal developments have expanded recreational areas and enhanced accessibility. However, this growth has also led to a rise in safety incidents. These accident factors can be divided into human-made and natural types. The latter is comprised of dynamic factors like waves, tides, sea fogs, and winds. While institutions like the Korea Meteorological Administration and the Korea Hydrographic and Oceanographic Agency already offer data on these dynamic factors, the resolution is often insufficient for a precise assessment of localized risks. In this study, to overcome these limitations, we utilized the dynamic information from existing open systems to construct a high-resolution numerical simulation. Through this, we developed an automated module to predict dynamic factors in localized coastal activity areas. Particularly during the module's construction, we compared and reviewed the numerical prediction results for waves with observed wave heights.

Development and Verification of NEMO based Regional Storm Surge Forecasting System (NEMO 모델을 이용한 지역 폭풍해일예측시스템 개발 및 검증)

  • La, Nary;An, Byoung Woong;Kang, KiRyong;Chang, Pil-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.373-383
    • /
    • 2020
  • In this study we established an operational storm-surge system for the northwestern pacific ocean, based on the NEMO (Nucleus for European Modeling of the Ocean). The system consists of the tide and the surge models. For more accurate storm surge prediction, it can be completed not only by applying more precise depth data, but also by optimal parameterization at the boundaries of the atmosphere and ocean. To this end, we conducted several sensitivity experiments related to the application of available bathymetry data, ocean bottom friction coefficient, and wind stress and air pressure on the ocean surface during August~September 2018 and the case of typhoon SOULIK. The results of comparison and verification are presented here, and they are compared with POM (Princeton Ocean Model) based Regional Tide Surge forecasting Model (RTSM). The results showed that the RTSM_NEMO model had a 29% and 20% decrease in Bias and RMSE respectively compared to the RTSM_POM model, and that the RTSM_NEMO model had a lower overall error than the RTSM_POM model for the case of typhoon SOULIK.

A Study on Development of the Tidal Database for the Philippines (필리핀을 위한 조석 데이터베이스 개발에 관한 연구)

  • PARK, Eung-Hyun;AHN, Se-Jin;SHIM, Moon-Bo;JEON, Hae-Yeon;KANG, Ho-Yun;KIM, Dae-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.158-168
    • /
    • 2019
  • Korea Hydrographic and Oceanographic Agency(KHOA) carried out a research project named 'Marine Fisheries Infrastructure Construction and Technology Training for the Philippines' as part of the 1st Official Development Assistance(ODA) from 2015 to 2018. It is preparing for the 2nd ODA project which will begin in 2020. Besides, recently, the Philippines is paying attention to marine territory management and response capability due to problems such as the sea-level rise and coastal erosion caused by climate change. Therefore, before 2nd ODA to the Philippines, this study analyzed the vertical ocean model on the vertical datum in Korea and suggests the direction of development of the vertical ocean modeling system for the vertical datum in the Philippines using the observed data from the permanent tide station which was built by the Philippines ODA research project over the last four years. Moreover, as a pilot study, the Sulu Sea in the Philippines was selected and analyzed by harmonic analysis method. At each tide station, constants for correction had been computed. And the grid-based tidal model was constructed based on this study. As a result of the study, similar tidal characteristic were observed when the prediction and the measured tide were compared by applying the constants for correction between two station in the sea area with similar tidal level. These results could be used as basic data for the 2nd ODA to the Philippines, and contributed to construct and maintain a close cooperation and friendship between Korea and the Philippines.

Distribution Patterns of Surface Sediments of the Jangan Linear Sand Ridge off the Northern Taean Peninsula, in the Mid-west Coast of Korea (서해 중부 태안반도 북부 해역의 장안사퇴 표층퇴적물 분포 특성)

  • TAE SOO CHANG;EUNIL LEE;DO-SEONG BYUN;HWAYOUNG LEE;SEUNG-GYUN BAEK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.14-27
    • /
    • 2024
  • Unlike the shelf sand ridges moribund in motion, nearshore sand ridges are highly mobile, sensitive to changes in ocean environments, thereby becoming of particular interest with respect to morphological changes. About 5 km off the Daesan port, the Jangan Sand Ridge has been undergoing severe subsea morphological change over the past two decades. Understanding the nature of sand ridges is critical to elucidate the causes of morphological changes. In this context, this study aims at understanding the characteristics and distribution patterns of surface sediments of the ridge and its vicinity. For this purpose, 227 sediment samples were acquired using a grab-sampler, the grain sizes being analysed by the sieve-pipette method. In addition, comparison of grain sizes in sediments between 1997 and 2021 was made in order to investigate the 25-years change in sediment composition. Surface sediments along the ridge axis are fine to medium sands with 2-3 phi in mean grain size, whereas, in the trough of ridge, the sediments are composed of gravels and muddy sandy gravels with mean sizes of -2 to -6 phi. Sediments in the crest of the ridge are well-sorted with normal distribution, on the other hand, the basal sediments are poorly-sorted and positively skewed. Along the ridge crest, the sediments are negatively skewed. From 1997 to 2021, the ridge sediments became largely coarser about 0.5 phi. Such coarsening trend in mean grain size can be explained either by elimination of fine sediments during high waves in winter or elimination of fines suspended during sand mining activities in the past. Spatial distribution pattern of surface sediments shows that ca. 30 m thick of the sand ridge itself overlies the thin relict gravels. The strong asymmetry of sand ridge, the exposure of ridge base, and reworked gravel lags suggest that Jangan sand ridge is probably sediment-deficit and hence erosive in nature at present.

A Study on the Decision for External Water Level of a River Considering Sea Level Rise (해수면 상승을 고려한 하천 외수위 결정에 관한 연구)

  • Choo, Tai Ho;Yun, Gwan Seon;Kwon, Yong Been;Ahn, Si Hyung;Kim, Jong Gu
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.604-613
    • /
    • 2016
  • The sea level of the Earth is rising approximately 2.0mm per year (global average value) due to thermal expansion of sea water, melting of glaciers and other causes by global warming. However, when it comes to design a river, the standard of design water level is decided by analyzing four largeness tide value and harmonic constant with observed tidal water level. Therefore, it seems the external water level needs to consider an increasing speed of the seawater level which corresponds to a design frequency. In the present study, the hourly observed tidal water level targeting 47 tidal stations operated by Korea Hydrographic and Oceanographic Administration (KHOA) from beginning of observation to 2015 per hour has been collected. The variation of monthly and yearly and increasing ratio have been performed divided 4 seas such as the Southern, East, Western, and Jeju Sea. Also, the external water level existing design for rivers nearby a coast was been reviewed. The current study could be used to figure out the cause of local seawater rise and reflect the external water level as basic data.

Analysis of Sea Level Rise Trend using Long-term Observation Data (장기 관측자료를 이용한 해수면 상승경향 분석)

  • Yang, Su-Hyun;HWang, Kyu-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.212-212
    • /
    • 2021
  • 지구온난화에 따른 가장 큰 영향 중의 하나인 해수면 상승은 인구 및 산업시설이 집중되어 있는 연안에 심각한 영향을 미칠 수 있다. 연안 저지대 범람, 하천과 지하수로의 해수 유입, 하천의 수위증가, 조석 및 퇴적물의 변화 등의 직접적 피해를 증가시키고(국립해양조사원, 2012; Nicholls, 2002; 오상명 등, 2011), 시설물의 설계고 추산 및 흐름, 파랑의 흐름에 영향을 미쳐 연안 시설물의 안정성이나 기능성에 영향을 미치는 것으로 알려지고 있다(윤종주·김상익, 2012). 기후변화에 관한 정부간 협의체(Intergovernmental Panel on Climate Change, IPCC)의 5차 보고서(2014)에 따르면, 1901~2010년 동안 전 지구 평균해수면 상승률은 1.7mm/year에 이르며, 1990년대 이후에 더 높은 해수면 상승률을 예측하였다. 우리나라의 경우, 2010년 말까지의 자료분석 결과에서 2.48mm/year의 연평균 해수면 상승률을 보여 전세계 평균상승률보다 훨씬 상회하는 것으로 보고되고 있다(정태성, 2014; 윤종주 등, 2012). 이와 같이 전 지구적 평균해수면의 변화와는 별개로 지역적 해수면 변동특성은 그 양상이 크게 다를 수 있으며, 이는 지구온난화와 같은 자연적인 요인 뿐만 아니라 지역별 다양한 인위적 요인(풍속, 기압, 연안역 개발정도 등)에 따라 지역적 해수면 상승이 크게 변화할 수 있다. 이에 본 연구에서는 국내 연안역에 분포한 조위관측소의 장기 관측자료(수위)를 이용하여 각 지역별 해수면의 상승경향을 분석하였으며, 동/서/남해안 및 제주권역은 권역별 조석특성이 현저하게 다른 특성을 보이므로 권열별로 구분하여 분석이 수행되었는데 우리나라 대부분의 관측지점에서 평균해수면이 증가하는 추세인 것으로 나타났다.

  • PDF

Study of Runoff Characteristic Analysis in Tidal River Basin (감조하천의 유출특성 분석에 관한 연구)

  • Shim, Eun-Jeung;Lee, Yeon-Kil;Lee, Jin-Won;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1834-1838
    • /
    • 2007
  • 감조하천을 비롯한 주요 하천에서 수자원량의 정량화는 수위-유량관계곡선식 개발로부터 가능한 일이다. 그러나 신뢰성 있는 수위-유량관계곡선식을 개발하는 것은 수문관측의 불확실성과 현장의 열악한 사정 등으로 발생하는 오차들 때문에 어려운 일이다. 조위의 영향을 받는 감조하천은 무 강우에도 수위의 변동이 심한 특성으로 수위와 유량의 관계를 규정하는 것은 일반 하천의 경우보다 난해하다고 할 수 있다. 본 연구는 감조하천의 유출특성 분석에 관한 기초적인 연구로 향후 감조하천 구간에 설계되는 수공구조물의 설계, 혹은 치수목적으로 설계되는 유수지 등의 설계에 이용될 유량자료를 제공하기 위함이다. 유량자료를 생산하기 위해서는 대상 수위관측소지점의 수위-유량관계곡선식으로부터 수위-수문곡선을 유량-수문곡선으로 환산하여야 한다. 이렇듯 유량자료는 곡선식의 정밀도에 전적으로 좌우되기 때문에 신뢰성 있는 곡선식 개발은 중요한 일이다. 본 연구에서는 감조하천에서의 유량자료 생산과 유출 특성을 분석하고자, 만경강 수계에 위치하는 목천 지점을 대상유역으로 선정하였다. 2006년 저 평수기 및 홍수기에 걸쳐 유량측정을 실시하여 다수의 유량측정성과를 확보하였으나 조위의 영향으로 산만한 수리특성을 보였다. 따라서 본 연구에서는 이에 대한 영향을 파악하기 위해서 감조의 영향권에서 각각의 유량이 어떻게 변화하는지 검토하고자 국립해양조사원 해양자료실의 조위관측소에서 제공하는 군산외항 지역의 조석예보표를 이용하여 분석하였다. 본 연구의 분석 결과, 유량측정 당시 간조와 만조의 영향권에서 측정이 이루어진 관계로 유량과 유속 등의 수리 특성이 많은 변화가 발생한 것으로 분석되었다. 이와 같은 영향으로 목천과 같은 감조하천의 경우, 저수위 측정성과는 그 분산정도가 심해 일반화된 수위-유량관계 곡선의 개발이 의미 없다고 판단되며, 홍수기에 측정된 성과를 바탕으로 고수위대의 수위-유량관계 곡선식을 개발하여야 할 것으로 판단된다. 본 연구를 통해 일부 확인된 바와 같이, 일반적인 자연하천이 아닌 감조하천의 경우는, 각각의 수위대별 유량 값의 변화가 발생하는 바 기간별 혹은 간조와 만조부를 포함하여 유량측정을 하여야 할 것으로 판단된다.

  • PDF

Precise Geoid Calculation Using Shipborne Gravity Data of the Mid-Yellow Sea Around KOREA (해상중력자료를 이용한 서해 중부해역의 정밀지오이드 산정)

  • 최윤수;박병욱;최광선;김진섭
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.383-388
    • /
    • 2002
  • This study suggests a data processing method for precise geoid height calculation through sea gravity data of mid-Yellow Sea provided by Haeyang 2000 and satellite altimetry data and the EGM96 geopotential model from GSFC/DMA in USA. Also it compared sea gravity data with satellite altimetry gravity data. As a result, precise geoidal undulation of the mid-Yellow Sea presented from calculating and integrating EGM96 geopotential model in degree and order 167 and a relative geoid by integral radius of 27km respectively It has a mean value of 18.339m, varying from 13.564m to 22.785m. the comparison between sea gravity data and satellite altimetry data shows that the former is more precise than the latter, which showed an anomaly of 0.56m0Gal and RMSE of 4.195m.

A Non-annotated Recurrent Neural Network Ensemble-based Model for Near-real Time Detection of Erroneous Sea Level Anomaly in Coastal Tide Gauge Observation (비주석 재귀신경망 앙상블 모델을 기반으로 한 조위관측소 해수위의 준실시간 이상값 탐지)

  • LEE, EUN-JOO;KIM, YOUNG-TAEG;KIM, SONG-HAK;JU, HO-JEONG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.307-326
    • /
    • 2021
  • Real-time sea level observations from tide gauges include missing and erroneous values. Classification as abnormal values can be done for the latter by the quality control procedure. Although the 3𝜎 (three standard deviations) rule has been applied in general to eliminate them, it is difficult to apply it to the sea-level data where extreme values can exist due to weather events, etc., or where erroneous values can exist even within the 3𝜎 range. An artificial intelligence model set designed in this study consists of non-annotated recurrent neural networks and ensemble techniques that do not require pre-labeling of the abnormal values. The developed model can identify an erroneous value less than 20 minutes of tide gauge recording an abnormal sea level. The validated model well separates normal and abnormal values during normal times and weather events. It was also confirmed that abnormal values can be detected even in the period of years when the sea level data have not been used for training. The artificial neural network algorithm utilized in this study is not limited to the coastal sea level, and hence it can be extended to the detection model of erroneous values in various oceanic and atmospheric data.

Korean Ocean Forecasting System: Present and Future (한국의 해양예측, 오늘과 내일)

  • Kim, Young Ho;Choi, Byoung-Ju;Lee, Jun-Soo;Byun, Do-Seong;Kang, Kiryong;Kim, Young-Gyu;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.89-103
    • /
    • 2013
  • National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.