• Title/Summary/Keyword: 국립해양조사원

Search Result 114, Processing Time 0.02 seconds

A Base Study of Intergrated Map for Integrated Coastal Zone Management (연안통합관리를 위한 통합수치도 개발에 관한 연구)

  • Yi, Gi-Chul;Suh, Sang-Hyun;Jeong, Hui-Gyun;Park, Chang-Ho;Yeo, Ki-Tae
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.4
    • /
    • pp.425-436
    • /
    • 2003
  • Integrated approach is presented by developing the technology and the ways of the practical use of the integrated digital map of and Electronical Navigational Chart (ENC) and Digital Terrain Map (DTM) for the effective and scientific based conservation, development and management of coastal area in this study. At first as preliminary studies to make eventual integrated maps, the necessity of the integrated map is described with the concept of coastal areas. Then, the characteristics of digital maps developed by Korean Geography Institute and National Marine Investigation Institute are carefully analyzed and integrated to a digital map as a test for edge matching in coastal line. Developed test coastal map was overlayed with a high-resolution satellite image (KVR-1000). The ground survey using Global Positioning System was conducted for the analysis of edge matching along the coastal line. Results from the edge matching analysis of coastal lines showed about 14 meters mean difference in artificial terrain and 4 meters mean difference in natural terrain. The problems, causes and solutions for the edge-matched differences are described. Furthermore, the value of utilization, the future use and various fields of application produced by the integrated digital map database are suggested as a basis for ICZM implementation in South Korea.

  • PDF

Estimation of Mean Surface Current and Current Variability in the East Sea using Surface Drifter Data from 1991 to 2017 (1991년부터 2017년까지 표층 뜰개 자료를 이용하여 계산한 동해의 평균 표층 해류와 해류 변동성)

  • PARK, JU-EUN;KIM, SOO-YUN;CHOI, BYOUNG-JU;BYUN, DO-SEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.208-225
    • /
    • 2019
  • To understand the mean surface circulation and surface currents in the East Sea, trajectories of surface drifters passed through the East Sea from 1991 to 2017 were analyzed. By analyzing the surface drifter trajectory data, the main paths of surface ocean currents were grouped and the variation in each main current path was investigated. The East Korea Warm Current (EKWC) heading northward separates from the coast at $36{\sim}38^{\circ}N$ and flows to the northeast until $131^{\circ}E$. In the middle (from $131^{\circ}E$ to $137^{\circ}E$) of the East Sea, the average latitude of the currents flowing eastward ranges from 36 to $40^{\circ}N$ and the currents meander with large amplitude. When the average latitude of the surface drifter paths was in the north (south) of $37.5^{\circ}N$, the meandering amplitude was about 50 (100) km. The most frequent route of surface drifters in the middle of the East Sea was the path along $37.5-38.5^{\circ}N$. The surface drifters, which were deployed off the coast of Vladivostok in the north of the East Sea, moved to the southwest along the coast and were separated from the coast to flow southeastward along the cyclonic circulation around the Japan Basin. And, then, the drifters moved to the east along $39-40^{\circ}N$. The mean surface current vector and mean speed were calculated in each lattice with $0.25^{\circ}$ grid spacing using the velocity data of surface drifters which passed through each lattice. The current variance ellipses were calculated with $0.5^{\circ}$ grid spacing. Because the path of the EKWC changes every year in the western part of the Ulleung Basin and the current paths in the Yamato Basin keep changing with many eddies, the current variance ellipses are relatively large in these region. We present a schematic map of the East Sea surface current based on the surface drifter data. The significance of this study is that the surface ocean circulation of the East Sea, which has been mainly studied by numerical model simulations and the sea surface height data obtained from satellite altimeters, was analyzed based on in-situ Lagrangian observational current data.

A Study on the Development of Supporting System for Distribution of S-63 ENCs (S-63 암호화된 전자해도 공급을 위한 지원시스템 개발연구)

  • Oh, Se-Woong;Jang, Won-Seok;Park, Jong-Min;Park, Han-San;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.181-183
    • /
    • 2007
  • Copyright infringement and data piracy are pervasive problems of digital era and Electronic Navigational Charts(ENC) are not free from these issues. Aside from the economic impact, the unofficial distribution of nautical information has sign띠cant safeη concerns. Therefore, official distributors of nautical information have sought appropriate methods to protect their data and to provide the mariner with a certificate of authenticity through the adoption of security schema. However, a plethora of different security schema provided by independent distributors markedly complicates the software development of Electronic Chart Display and Information Systems (ECDIS) manufacturers and makes it more difficult to achieve the goal of seamless world-wide electronic navigational database easily accessible to the mariner. A fundamental concern of IHO is that adoption of a single, centrally administered security scheme for all ENCs could improve the ease of use of ENCs and enhance safety of navigation. IHO have driven protection scheme as S-63, S-63x. NORI(National Oceanographic Research Institute) necessarily need protection scheme and supporting system for nautical information. This paper presents protection scheme for NORI and proposes support system for ENC protection.

  • PDF

Development for the function of Wind wave Damage Estimation at the Western Coastal Zone based on Disaster Statistics (재해통계기반 서해 연안지역의 풍랑피해예측함수 개발)

  • Choo, Tai Ho;Kwak, Kil Sin;Ahn, Si Hyung;Yang, Da Un;Son, Jong Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2017
  • The frequency and scale of natural disasters due to the abnormal climate phenomena caused by global warming have being increasing all over the world. Various natural disasters, such as typhoons, earthquakes, floods, heavy rain, drought, sweltering heat, wind waves, tsunamis and so on, can cause damage to human life. Especially, the damage caused by natural disasters such as the Earthquake of Japan, hurricane Katrina in the United States, typhoon Maemi and so on, have been enormous. At this stage, it is difficult to estimate the scale of damage due to (future) natural disasters and cope with them. However, if we could predict the scale of damage at the disaster response level, the damage could be reduced by responding to them promptly. In the present study, therefore, among the many types of natural disaster, we developed a function to estimate the damage due to wind waves caused by sea winds and waves. We collected the damage records from the Disaster Report ('91~'14) published by the Ministry of Public Safety and Security about wind waves and typhoons in the western coastal zone and, in order to reflect the inflation rate, we converted the amount of damage each year into the equivalent amount in 2014. Finally, the meteorological data, such as the wave height, wind speed, tide level, wave direction, wave period and so on, were collected from the KMA (Korea Meteorological Administration) and KHOA (Korea Hydrographic and Oceanographic Agency)'s web sites, for the periods when wind wave and typhoon damage occurred. After that, the function used to estimate the wind wave damage was developed by reflecting the regional characteristics for the 9 areas of the western coastal zone.

Determination of Minimum Vertex Interval using Shoreline Characteristics (해안선 길이 특성을 이용한 일관된 최소 점간거리 결정 방안)

  • WOO, Hee-Sook;KIM, Byung-Guk;KWON, Kwang-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.169-180
    • /
    • 2019
  • Shorelines should be extracted with consistency because they are the reference for determining the shape of a country. Even in the same area, inconsistent minimum vertex intervals cause inconsistencies in the coastline length, making it difficult to acquire reliable primary data for national policy decisions. As the shoreline length cannot be calculated consistently for shorelines produced by determining the arbitrary distance between points below 1m, a methodology to calculate consistent shoreline length using the minimum vertex interval is proposed herein. To compare our results with the shoreline length published by KHOA(Korea Hydrographic and Oceanographic Agency) and analyze the change in shoreline length according to the minimum vertex interval, target sites was selected and the grid overlap of the shoreline was determined. Based on the comparison results, minimum grid sizes and the minimum vertex interval can be determined by deriving a polynomial function that estimates minimum grid sizes for determining consistent shoreline lengths. By comparing public shoreline lengths with generalized shoreline lengths using various grid sizes and by analyzing the characteristics of the shoreline according to vertex intervals, the minimum vertex intervals required to achieve consistent shoreline lengths could be estimated. We suggest that the minimum vertex interval methodology by quantitative evaluation of the determined grid size may be useful in calculating consistent shoreline lengths. The proposed method by minimum vertex interval determination can help derive consistent shoreline lengths and increase the reliability of national shorelines.

Precise Topographic Change Study Using Multi-Platform Remote Sensing at Gomso Bay Tidal Flat (다중 원격탐사 플랫폼 기반 곰소만 갯벌 정밀 지형변화 연구)

  • Hwang, Deuk Jae;Kim, Bum-Jun;Choi, Jong-Kuk;Ryu, Joo Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.263-275
    • /
    • 2020
  • In this study, DEMs (Digital elevation model) based on LIDAR, TanDEM-X and UAV (Unmanned Aerial Vehicle) are used to analyze topographic change of Gomso tidal flat during a few years. DEM from LIDAR data was observed at 2011 by KHOA (Korean hydrographic and oceanographic agency) and DEM based on TanDEM-X data was generated at Lee and Ryu (2017). UAV data was observed at KM and KH area of Gomso tidal flat. KM area was surveyed at MAY and AUG 2019, and KH area was surveyed at APR 2018 and MAY 2019. During research period, 2011 to AUG 2019, elevation of KM area is decreased 0.24 m in average, and Chenier is retreat to landward about 130 m. In KH area, elevation is increased 0.16 m in average during research period, 2011 to MAY 2019. It is expected that multi-platform remotely sensed data can help to study accurate topographic change of tidal flat.

Wave and surface current measurement with HF radar in the central east coast of Korea (동해중부에서 HF Radar를 이용한 파랑 및 해수유동 관측)

  • Kim, Moo-Hong;Kim, Gyung-Soo;Kim, Hyeon-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.771-780
    • /
    • 2014
  • We installed HF Radar of Array type in Site A and Site B, observing the real-time wave and current in the central East coast of Korea. WERA(WavE RAdar) in this research uses HF Radar of Array Type with frequency range of 24.525 MHz, developed by Helzel, Germany. Each site is a 8-Channel system consisting of four transmitters and eight receivers, generating wave and current data, being observed every thirty minutes at the present time. HF Radar has grid resolution of an interval of 1.5 km using bandwidth of 150 kHz; The wave data covers an observation range of about 25 km, and the current data covers the maximum observation range of about 50 km. The Wave data observed by HF Radar was compared and verified with the AWAC data observed in the research sites. MIT also compared the Current data observed by HF Radar with Monthly the East sea average surface current and current flow pattern provided by KOHA(Korea Hydrographic and oceanographic Administration). The regression line and deviation of the comparison data of Wave was calculated by Principal Component Analysis, which showed correlation coefficient 0.86 and RMSD 0.186. Besides, data analysis of long-term changes of the current in the East coast showed that, during August and September, the North Korean Cold Current flow into the southward direction and the East Korean Warm Current flow into the northward direction in the coast.

Data Process and Precision Analysis of Ship-Borne Gravity (선상 중력자료의 처리 및 정밀도 분석)

  • Keum, Young-Min;Kwon, Jay-Hyoun;Lee, Ji-Sun;Choi, Kwang-Sun;Lee, Young-Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.89-97
    • /
    • 2010
  • The ship-borne gravity data is essential to construct geoid in Korea surrounding ocean area. The altimeter data was used in previous study, however, the ship-borne gravity data could be used due to more ship-borne data was collected by improvement of instrument, positioning system. Therefore, the study on verification of precision of ship-borne gravity data and practical usage analysis is needed. In this study, free-air anomaly having 16.47mGal and 18.86mGal as mean and standard deviation was obtained after consistent processing such as Eotvos correction, Kalman Filter, Cross-over adjustment etc. The calculated free-air anomaly was compared to DNSC08 altimeter data and the difference was computed having -0.88mGal and 9.46mGal of mean and standard deviation. The reason causing those differences are owing to spatial limits of data acquisition and effects of ocean topography. To use ship-borne gravity data for precision geoid development, the efforts to overcome the limits of data collection and study for data combination should be proceeded.

Time Series Analysis of Area of Deltaic Barrier Island in Nakdong River Using Landsat Satellite Image (Landsat 위성영상을 활용한 낙동강 삼각주 연안사주의 면적 시계열 분석)

  • Lee, Seulki;Yang, Mihee;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.457-469
    • /
    • 2016
  • Nakdong river barrage was affected by artificial interference such as construction of port, industrial complex and estuary barrage. This change in Nadong river lead to environmental changes and affected the ability of barrier islands. Therefore, it is decided that the observation of changes in the Nakdong river estuary is very important. In this paper, the topographic change of the Nakdong river barrage observe based on Landsat TM, ETM+ images from 1984 to 2015. In addition, this study tried to conduct a comparative analysis on the area for change of sandy sediment according to tide level. This results could estimate height and volume about sandy sediment accumulated on the lower sand dune. Also, these results are expected to be the basis for prediction of the changing topography of the sand dune. The area of the average change in region 1,2,3 was calculated as 3,015m2, 167,550m2, 14,596m2. This result is expected to be very useful for the continuous observation for sediment changes of Nakdong river.

The Maritime Geography of Korea Strait: Suggested Nomenclature and Cartographic Boundaries Derived from a Review of Historical and Contemporary Maps (국제학술지, 지도, 문서에 나타난 대한해협 해양지명과 경계에 대한 인식 변화)

  • DO-SEONG BYUN;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.2
    • /
    • pp.63-93
    • /
    • 2023
  • This study aims to examine the history of naming the strait between the Yellow and East China Seas and the East Sea to suggest a consistent nomenclature and to demarcate the geographic region of the strait. Although the strait is internationally known as 'Korea Strait', it is commonly referred to as the 'South Sea' in Korean common usage. This review ultimately recommends the use of 'Korea Strait' as an appropriate geographical name for this area. To support this recommendation, the historical boundaries typically assigned to the Korea Strait were investigated. We also analyzed the evolution of geographical labels assigned to Korea Strait and to the Western and Eastern Channels (labels given to the two maritime areas surrounding Tsushima). Resources for this analysis included historic maps and charts, International Hydrographic Organization Special Publications (S-23), and maps published in the Ocean Science Journal (OSJ) and Journal of Oceanography (JO), which are two international journals representing Korean and Japanese sources, respectively, from 2005 to 2021. In these two international journals, the most frequently used names assigned to the strait of interest were Korea Strait (appearing 42.9% of OSJ maps, and 7.5% of JO maps), and Tsushima Strait (appearing 60.4% of JO maps, and 0% of OSJ maps). Other names were South Sea and Korea Strait/Tsushima Strait. On maps in the two reviewed journals, the boundaries of Korea Strait were defined explicitly or implicitly in five different ways: a broad region between the Yellow and East China Seas and Ulleung Basin (Type 1), the region between Ulleung Basin and Tsushima (Type 2), the western channel of the strait (Type 3-1), the eastern channel of the strait (Type 3-2), and both the western and eastern channels of the strait (Type 4). Overall, Type 1 was the most frequently used boundary, taking up 71.4% of OSJ and 60.4% of JO maps. Lastly, we suggest in this paper that the current flowing through Korea Strait from the East China Sea to the East Sea should be labeled the 'Korea Strait Warm Current' to indicate its full path through the strait. Currently, this current is internationally referred to as the 'Tsushima Warm Current', which does not link well to the commonly used geographic name of the strait.