• Title/Summary/Keyword: 구획실 화재

Search Result 53, Processing Time 0.024 seconds

Evaluation of Design Fire Curves for Gas Fires in a Compartment Using CFAST (CFAST를 이용한 구획실 가스화재의 디자인 화재곡선 평가)

  • Baek, Bitna;Oh, Chang Bo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.7-16
    • /
    • 2018
  • In this study, the prediction performance of design fire curves (DF) was evaluated for gas fires in a compartment by using CFAST. The CFAST simulations adopted the 2-stage DF suggested by the previous study and the Quadratic and Exponential DF suggested by Ingason. It was found by comparing the simulation and experimental results that the overall prediction performance of the design fire cures for the spatially-averaged temperature and concentrations of $O_2$ and $CO_2$ was, from the most reasonable to the most inaccurate, 2-stage DF > Quadratic DF > Exponential DF. The CFAST simulation could not predict for the difference in the spatially-averaged temperature and concentrations of $O_2$ and $CO_2$ at door and inner side locations in a compartment. The CFAST simulations also showed a limitation in the prediction of the spatially-averaged temperature at lower layer and the concentration of CO.

A Numerical Study on the Effect of Volume Change in a Closed Compartment on Maximum Heat Release Rate (밀폐된 구획실의 체적변화가 최대 열발생률에 미치는 영향에 관한 수치해석 연구)

  • Yun, Hong-Seok;Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.19-27
    • /
    • 2017
  • The effects of changes in area and location of fire source, fire growth rate, and volume of compartment on the major fire characteristics, including heat release rate, in closed compartment fires were examined. To this end, a fire simulation using Fire Dynamics Simulator (FDS) was performed for ISO 9705 room with a closed opening. As main result, it was found that the changes in the area and location of fire source did not significantly affect the thermal and chemical characteristics inside the compartment, such as maximum heat release rate, total heat release, maximum temperature at upper layeras well as species concentrations. However, increasinthe fire growth rate and volume of compartment resulted in increase of the maximum heat release rate and total heat release, decrease in the limiting oxygen concentration and increase in the maximum CO concentration. Finally, a methodology for the application of fire growth curves to closed compartment fires was proposed by deriving the correlation of the maximum heat release rate expressed as a function of the fire growth rate and the volume ratio of compartment based on the ISO 9705 room.

Numerical Study on the Validity of Scaling Law for the Heat and Fluid Flow of Compartment Fires (구획화재 열유동에 대한 축소법칙의 유효성에 관한 수치해석 연구)

  • Ko, Gwon-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.159-162
    • /
    • 2011
  • 본 연구에서는 환기 특성에 근거한 축소법칙의 유효성을 평가하기 위해 실규모 및 2/5 축소 구획에 대한 화재를 FDS를 이용하여 모사하고 기존의 실험 결과 및 해석 결과 상호간에 비교 분석을 수행하였다. 실규모 및 축소 모형에 대한 해석 결과를 비교할 때 구획 내부 유동 형태 등에 있어서 다소간의 차이를 보였으나 화염의 분출 거동 및 열유동 분포 등의 거시적인 특성에 대해서는 유사한 결과를 보여주었다.

  • PDF

Numerical Study on the Validity of Scaling Law for Compartment Fires (구획 화재의 상사 법칙 유효성에 관한 수치해석 연구)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2014
  • In this study, to assess the validity of scaling law which was based on the ventilation factor and utilized in fields of compartment fires, numerical simulations were conducted on full- and 2/5 reduced-scale compartment fires using FDS and simulation results were compared with the previously published experimental data. The numerical modeling used in this study was verified by comparing the predicted temperature at several points of the upper layer with the experiment data. Temperature and concentration distribution inside of compartments and velocity profile at door of compartment are analyzed to assess the validity of scaling law. Comparison between the predicted results on the full- and reduced-scale compartments shows good agreements on the inner compartment flow patterns, outflowing flame patterns from the compartments, and vertical temperature distributions.

Changes in Fire Characteristics according to the Distance Between the Fire Source and Sidewall in a Reduced-Scale Compartment (축소 구획실에서 화원과 측벽의 거리에 따른 화재특성 변화)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-59
    • /
    • 2019
  • Experimental and numerical studies on the fire characteristics according to the distance between the fire source and sidewall under the over-ventilated fire conditions. A 1/3 reduced ISO 9705 room was constructed and spruce wood cribs were used as fuel. Fire Dynamics Simulator (FDS) was used for fire simulations to understand the phenomenon inside the compartment. As a result, the mass loss rate and heat release rate were increased due to the thermal feedback effect of the wall in the compartment fire compared to the open fire. As the distance between the fire source and sidewall was reduced, the major fire characteristics, such as maximum mass loss rate, heat release rate, fire growth rate, temperature, and heat flux, were increased despite the limitations of air entrainment into the flame. In particular, a significant change in these physical quantities was observed for the case of a fire source against the sidewall. In addition, the vertical distribution of temperature was changed considerably due to a change in the flow structure inside the compartment according to the distance between the fire source and sidewall.

An Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed Compartment (반밀폐된 구획에서 비정상 화재특성 예측을 위한 FDS의 평가)

  • Hwang, Cheol-Hong;Mun, Sun-Yeo;Park, Chung-Hwa;Kim, Jong-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.3-6
    • /
    • 2011
  • 비정상(unsteady) 화재성장이 발생되는 반밀폐된 구획에서 환기부족화재의 열 및 화학적 특성에 관한 FDS(Fire Dynamics Simulator)의 예측성능 평가가 수행되었다. 이를 위해 실규모 ISO 9705 표준 화재실의 출입구 폭이 0.1m로 축소되었으며, spray 노즐을 통해 Heptane 연료유량은 선형적으로 증가되었다. 수치계산에 대한 신뢰도 확보를 위하여 동일조건에서 수행된 실험결과와의 상세한 비교가 이루어졌다. 적절한 격자계를 이용한 FDS의 결과는 구획 내부의 온도 및 열유속(heat flux)은 비교적 잘 예측하지만, 비정상 CO 및 $CO_2$ 생성특성은 적절히 예측하지 못함을 확인하였다. 이러한 결과는 최근 수행된 유사조건의 정상상태 환기부족 구획화재에 대한 FDS 예측결과와 상반된 것으로서, 반밀폐된 구획화재 모델링에서 FDS를 이용한 비정상 CO 생성특성 예측에 상당한 주위가 요구됨을 확인하였다.

  • PDF

Examination on Effect of Horizontal Vent Position on Fire Phenomena in Enclosure (구획실 화재 현상에 대한 수평 개구부 위치의 영향 검토)

  • Park, Yu Mi;Lee, Chi Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.235-236
    • /
    • 2022
  • In the present study, the effect of horizontal vent position on fire phenomena in the enclosure with vertical and horizontal vents was examined using numerical simulation. Case 1 indicates the condition that the horizontal vent is in the center of the ceiling. Case 3 indicates the condition that the horizontal vent is far away from the vertical vent. Case 2 indicates the condition that the horizontal vent is installed between Case 1 and Case 3. The temperature distribution, smoke layer temperature, velocity distribution, and mass flow rate of horizontal vent flow were analyzed. In Case 2, the temperatures were lowest and the mass flow rate through the horizontal vent was largest. This is because the flame is inclined by the inflow through the vertical vent. Hence, to determine the proper horizontal vent location for the high smoke ventilation performance, the inflow through the vertical vent and its effect on flame behavior should be considered.

  • PDF

A Study on the Basic Investigation for the Fire Risk Assessment of Education Facilities (교육시설 화재위험성 평가를 위한 기초조사에 관한 연구)

  • Lee, Sung-Il;Ham, Eun-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.351-364
    • /
    • 2021
  • Purpose: Fire load analysis was conducted to secure basic data for evaluating fire risk of educational facilities. In order to calculate the fire load through a preliminary survey, basic data related to the fire load of school facilities were collected. Method: The basic data were the definition and types of fire loads, combustion heat data for the calculation of fire loads. The fire load was evaluated by multiplying the combustion heat by the weight of the combustibles in the compartment when calculating the fire load. Result: As for the fixed combustible materials of A-elementary school, the floor was mainly made of wood, in consideration of emotion and safety in the classroom, music room, and school office, and the rest of the compartments were made of stone. The ceiling and walls were made of gypsum board and concrete, so they were not combustible. The typical inflammable items in each room were desks, chairs, and lockers in the classroom, and the laboratory equipment box and experimental tool box were the main components in the science room, and books, bookshelves, and reading equipment occupied a large proportion in the library room. Conclusion: 'The fire loads of A-elementary' schools according to the combustibles loaded were in the order of library, computer room, English learning room, teacher's office, general classroom, science hall, and music room.