• Title/Summary/Keyword: 구조-유체 상호작용

Search Result 222, Processing Time 0.026 seconds

자연모사를 위한 유체-구조 연성 해석

  • Kim, Dae-Gyeom
    • Journal of the KSME
    • /
    • v.56 no.12
    • /
    • pp.46-50
    • /
    • 2016
  • 이 글에서는 유연한 수중 동물들의 다양한 추진 및 감각 기관의 형태와 기능을 이해하기 위한 유체-구조 상호작용 연구와 이를 기반으로 한 자연모사 공학 응용에 대해 소개하고자 한다.

  • PDF

Study on Modeling Procedure of Hydraulic Experiment of Coastal Structure Scour at Sea-Bed Using Fluid-structure Interaction (유체-구조 상호작용을 고려한 해안구조물의 해저면 세굴에 대한 조파실험 해석 기법 연구)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.49-53
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

An Analysis of Coupled Wind-Structure Interaction (바람과 구조물의 상호작용 해석)

  • 이재석;김종대
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.4-10
    • /
    • 1994
  • 컴퓨터 성능과 전산유체역학 분야는 지속적으로 발전하고 있으므로 이에 따라 유체의 유동장은 더욱 정확하고 상세히 묘사할 수 있게 될 것이며, 더불어 ALE유한요소법 등과 같은 유체-구조 상호작용해석 기법이 발전해 나갈 것이다. 따라서, 현재 수행되고 있는 풍동실험은 다양한 모형제작으로 인한 비용문제와 완성된 모형의 정밀도 문제, 각 모형에 대한 반복적인 실험과정 등 적절한 설계형상을 선택하는 과정에서 효율성이 낮은 경우가 많으므로 수치해석에 의한 내풍안정성 평가과정을 병행함으로써 실험의 효율성이 낮은 부분을 보완, 최소화할 수 있을 것이다. 특히 적은 비용 및 시간내에 개략적인 내풍안정성 파악이 요구되는 개념설계 및 초기설계단계에 근사적인 내풍안정성 검토 기술로서 결과적으로 활용될 수 있을 것이다. 또한 수치해석기법의 가장 큰 장애요인었던 유체 유동장의 모사정도가 향상됨에 따라 수치해석에 의한 장대구조물의 내풍안정성해석은 앞으로 상당한 발전이 있을 것으로 전망된다.

  • PDF

Dynamic Analysis of Offshore Structures Considering External Fluid-Structure Interaction (외부유체-구조물의 상호작용을 고려한 해양구조물의 동적해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.271-281
    • /
    • 2005
  • The effects of radiation damping is used to compensate the truncated boundary which is relatively close to the structure-fluid interface in the fluid element surrounding the submerged structures. An efficient ring element is presented to model the shell and fluid element which fully utilizes the characteristics of the axisymmetry. The computational model uses the technique which separate the meridional shape and circumferential wave mode and gets similar result with the exact solution in the eigenvalues and the earthquake analysis. The fluid-structure interaction techniques is developed in the finite element analysis of two dimensional problems using the relations between pressure, nodal unknown acceleration and added mass assuming the fluid to be invicid, incompressible and irrotational. The effectiveness and efficiency of the technique is demonstrated by analyzing the free vibration and seismic analysis using the added mass matrix considering the structural deformation effect.

Seismic Behaviors of Concrete-Suction-Type Offshore Wind Turbine Supporting Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 콘크리트 석션식 해상풍력 지지구조물의 지진거동 특성)

  • Lee, Jin Ho;Jin, Byeong-Moo;Bae, Kyung-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.319-327
    • /
    • 2017
  • In this study, characteristics of seismic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures are investigated. Applying hydrodynamic pressure from the surrounding sea water and interaction forces from the underlying soil to the structural system which is composed of RNA, the tower, and the supporting structure, a governing equation of the system is derived and its earthquake responses are obtained. It can be observed from the analysis results that the responses are significantly influenced by soil-structure interaction because dynamic responses for higher natural vibration modes are increased due to the flexibility of soil. Therefore, the soil-structure interaction must be taken into consideration for accurate assessment of dynamic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures.

Interaction Analysis between Waves and Caissons by Damping Zone Effect for Installing New Caisson on Old Caisson Breakwater (기존 케이슨방파제에 신규 케이슨 추가설치 시 댐핑존 영향에 따른 유체와 케이슨들간의 상호작용 평가)

  • Park, Min Su;Kim, Young Taek;Park, Sangki;Min, Jiyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.5
    • /
    • pp.156-168
    • /
    • 2022
  • The design and construction are carried out to improve the structural stability of caisson breakwaters by installing new caissons on the front or rear of old caissons. The wave forces acting on caisson are excessively calculated by the resonance of fluid existing between the old caisson and the new caisson in the numerical analysis using potential flow. In this study, we used the damping zone option in ANSYS AQWA program to analyze the wave forces acting on individual caissons according to the interaction effects between the incident wave and the caisson. By applying the damping zone option to the fluid in which resonance occurs, the wave forces acting on individual caissons were calculated by the change of damping factor. In addition, the wave force characteristics acting on individual caissons were analyzed for the different distances between caissons in the frequency domain analysis.

FLUID-STRUCTURE INTERACTION ANALYSIS OF LIQUID STORAGE STRUCTURES (액체 저장구조물의 유체-구조물 상호작용 해석)

  • 윤정방;김진웅;서정문;전영선
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.103-111
    • /
    • 1992
  • In this paper, liquid sloshing effects in rectangular storage structures for spent fuel under earthquake loadings are investigated. Eulerian and Lagrangian approaches are presented. The Eulerian approach is carried out by solving the boundary value problem for the fluid motion. In the Lagrangian approach, the fluid as well as the storage structure is modelled by the finite element method. The fluid region is discretized by using fluid elements. The (1*1)-reduced integration is carried out for constructing the stiffness matrices of the fluid elements. Seismic analysis of the coupled system is carried out by the response spectra method. The numerical results show that the fluid forces on the wall obtained by two approaches are in good agreements. By including the effect of the wall flexibility, the hydrodynamic forces due to fluid motion can be increased very significantly.

  • PDF

An Effect of Surface Dashpot for KC-1 Basic Insulation System Under Sloshing Loads (슬로싱 하중을 받는 KC-1 단열시스템의 표면 완충 효과)

  • Jin, Kyo Kook;Yoon, Ihn Soo;Yang, Young Chul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.193-199
    • /
    • 2015
  • Sloshing of LNG cargo can cause high impact loads on the supporting and containing structures. This is particularly critical for membrane-type tanks since these will have flat surfaces and corner regions which can lead to increased peak pressures for sloshing impacts. The membrane-type containment system is much more flexible compared to the steel hull structure. As a result, fluid-structure interaction plays an important role in the structural analysis of the containment system under sloshing load. This study is based on the direct calculation method of applying sloshing loads to the KC-1 basic insulation system using finite element analysis. The structural analysis of KC-1 basic insulation system considers the dashpot as fluid-structure interaction between liquid cargo and the LNG containment system. The maximum stress of the polyurethane form for KC-1 insulation system is 1.5 times lower than one without dashpot.

Incremental Excavation Analysis of Fluid-Saturated Ground (고체/유체 혼합체 이론모델에 의한 지반굴착해석)

  • 구정회;홍순조
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.17-22
    • /
    • 1993
  • 본 고에서는 다공매체에서 고체/유체의 상호작용을 조합해석할 수 있는 유한요소모델 개발현황을 살펴보고 이를 이용하여 다공매체의 단계적 굴착 시뮬레이션을 수행할 때 현재 널리 사용하고 있는 전응력해석에 의한 결과와의 차이점을 살펴보고자 한다.

  • PDF