• Title/Summary/Keyword: 구조 해석 모델

Search Result 3,769, Processing Time 0.033 seconds

Methodology of Shape Design for Component Using Optimal Design System (최적설계 시스템을 이용한 부품에 대한 형상설계 방법론)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.672-679
    • /
    • 2018
  • This paper describes a methodology for shape design using an optimal design system, whereas generally a three dimensional analysis is required for such designs. An automatic finite element mesh generation technique, which is based on fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with a commercial FE analysis code and a commercial solid modeler. Also, with the aid of multilayer neural networks, the present system allows us to automatically obtain a design window, in which a number of satisfactory design solutions exist in a multi-dimensional design parameter space. The developed optimal design system is successfully applied to evaluate the structures that are used. This study used a stress gauge to measure the maximum stress affecting the parts of the side housing bracket which are most vulnerable to cracking. Thereafter, we used a tool to interpret the maximum stress value, while maintaining the same stress as that exerted on the spot. Furthermore, a stress analysis was performed with the typical shape maintained intact, SM490 used for the material and the minimizing weight safety coefficient set to 3, while keeping the maximum stress the same as or smaller than the allowable stress. In this paper, a side housing bracket with a comparably simple structure for 36 tons was optimized, however if the method developed in this study were applied to side housing brackets of different classes (tons), their quality would be greatly improved.

Transient Structural Analysis of Piston and Connecting Rods of Reciprocating Air Compressor Using FEM (FEM을 이용한 왕복동 공기압축기의 피스톤 및 커넥팅로드의 구조해석)

  • Pham, Minh-Ngoc;Yang, Chang-Jo;Kim, Jun-Ho;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • In a reciprocating compressor, the piston and connecting rod are important parts. Excess mechanical stress on these parts may cause damage, and broken parts are expensive and difficult to replace. Therefore, it is necessary to analyze the mechanical stress affecting durability and longevity. The main purpose of this study was to identify locations of maximum stress on pistons and connecting rods. Based on dynamic calculation of the working process of a specific air compressor, an analysis of piston and connecting rod performance has been completed. A three-dimensional model for the air compressor's pistons and connecting rods was built separately, and FEM analysis of these components was carried out using a numerical method. The pistons were loaded by pressure which was changed according to crankshaft angle without thermal boundary conditions. The simulation results were used to predict and estimate stress concentration as well as the value of this stress on pistons and connecting rods. The maximum equivalent stress calculated are over 190 MPa on pistons and 123 MPa on connecting rods at crank angle $135^{\circ}$ and $225^{\circ}$ but these are under tensile yield strength. Besides, the calculated safety factors of connecting rods and pistons is higher than 1. Moreover, the results obtained can be used to provide manufacturers with references to optimize the design of pistons and connecting rods for reciprocating compressors.

Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 부탑재체 소형영상분광기 미광 해석)

  • Lee, Jin Ah;Lee, Jun Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.167-171
    • /
    • 2012
  • This paper reports on the stray light analysis results of a compact imaging spectrometer (COMIS) for a microsatellite STSAT-3. COMIS images Earth's surface and atmosphere with ground sampling distances of 27 m at the 18~62 spectral bands (0.4 ~ 1.05 ${\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. The telescope images a $27m{\times}28km$ area of Earth surface onto a slit of dimensions $11.8{\mu}m{\times}12.1mm$. This corresponds to a ground sampling distance of 27 m and a swath width of 28 km for nadir looking posture at an altitude of 700 km. Then the optics relays and disperses the slit image onto the detector thereby producing a monochrome image of the entrance slit formed on each row of detector elements. The spectrum of each point in the row is imaged along a detector column. The optical mounts and housing structures are designed in order to prevent stray light from arriving onto the image and so deteriorating the signal to noise ratio (SNR). The stray light analysis, performed by a non-sequential ray tracing software (LightTools) with three dimensional housing and lens modeling, confirms that the ghost and stray light arriving at the detector plane has the relative intensity of ${\sim}10^{-5}$ and furthermore it locates outside the concerned image size i.e. the field of view of the optics.

A Study on the Design Value Analysis Methodology for Bridge Structure Using Reliability Analysis (신뢰성 해석을 이용한 교량구조물의 설계VA기법 연구)

  • Kim, Seong-Il;Lee, Kwang-Mo;Choi, Suk-Won;Jung, Jun-Hwa;Kim, Seong-Il
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.114-125
    • /
    • 2009
  • In this study, a design value analysis technique that considered stochastic LCC and stochastic performance evaluation was proposed, and by introducing the concept of reliability analysis, a decision making that secured reliability was supported. The results of this study, which was carried out according to the above objectives and methods, are summarized as follows: 1) The design value analysis procedures and value state function, improved in order to carry out a reliable analysis when evaluating alternate proposals that were extracted after the function definition was complete, were formalized, and in order to secure consistency and efficiency for value evaluation procedures, an evaluation index scheme was proposed; 2) Database collection and analysis were done for a bridge's LCC analysis. As for the collection scope of data, literature of previous research done on a bridge's LCC analysis was used as the basis for analysis, and for securing reliability regarding analysis results and dealing with uncertainty of collected data, the MCS technique was applied; 3) Weights and evaluation ranks for performance evaluation of each of the alternate proposals, as well as LCC analysis model, analysis period, discount rate, user expense, safety inspection and safety diagnosis expense conditions for LCC analysis were proposed. Lastly, a feasibility study was done and conclusion was made about "OO grand bridge and connecting road construction work execution design" project centered on value analysis execution case.

Dynamic analysis of a cage affected by the current (조류의 영향을 바든 가두리의 거동해석)

  • Lee, Mi-Kyung;Lee, Chun-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.214-224
    • /
    • 2004
  • A large cage system for the purpose of fishes farming in the open sea was influenced by various forces from the ocean environment. The deformation of the cage by these forces affects the safety of the cage itself, as well as that of the cultivated creatures. In this research, theoretical model was established to analyzing dynamic movement influenced by current for cage. Also, to increase the accuracy of calculations, the reduction ratio of flow speed acquired using the flume tank experiment. Applying the reduction ratio of flow speed to the numerical calculation, the calculation values were compared with the measured values in the flume tank experiment using cage model. The results were as follows ; 1. When the flow speed of the flume tank is fixed, the decrease of the velocity of flow which is passed the upper panel side is proportion to the increase of porosity ratio of netting. 2. When the porosity ratio is fixed, the increase of the velocity of flow which is passed the upper panel side is proportion to the increase of velocity of flow. 3. When the porosity ratio and the flow speed of the flume tank are fixed, the decrease of the velocity of flow which is passed the upper panel side is proportion to the increase of attack angle. 4. As a result of comparison between the underwater shape by simulation which is applying the reduction ratio of flow speed from the experiment using plane netting and that by model experiment, it was found out that the result of the simulation was very close to that of model gear within ${\pm}$ 5 % error range.

Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines (헬리컬 터빈의 설계인자에 따른 성능 연구)

  • Han, Jun-Sun;Choi, Da-Hye;Hyun, Beom-Soo;Kim, Moon-Chan;Rhee, Shin-Hyung;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • The characteristics of a helical turbine to be used for tidal stream energy conversion have been numerically studied with varying a few design parameters. The helical turbines were proposed aiming at mitgating the well known poor cut-in characteristics and the structural vibration caused by the fluctuating torque, and the basic concept is introducing some twisting angle of the vertical blade along the rotation axis of the turbine. Among many potential controling parameters, we focused, in this paper, on the twisting angle and the height to diameter ratio of the turbine, and, based on the numerical experiment, We tried to propose a configuration of such turbine for which better performance can be expected. The three-dimensional unsteady RANS equations were solved by using the commercial CFD software, FLUENT with k-${\omega}$ SST turbulence model, and the grid was generated by GAMBIT. It is shown that there are a range of the twisting angle producing better efficiency with less vibration and the minimum height to diameter ratio above which the efficiency does not improve considerably.

Temperature-Induced Stresses and Deformation in Composite Box Girder Bridges (합성 박스형 교량의 온도에 의한 응력 및 변형)

  • Chang, Sung Pil;Im, Chang Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.659-672
    • /
    • 1997
  • Thermal response induced from nonlinear temperature distribution in composite box gilder bridges depends on several variables(environmental conditions, physical and material properties, location and orientation of bridge, and cross-section geometry). In this paper, parametric study are conducted in order to find the effects of variations of seasons, location and orientation of bridge, sectional geometry and some material properties on the axial deformation, curvature and stresses in composite box girder bridge. A two-dimensional transient finite element model to conduct this parametric studies is briefly presented. Firstly, the effects of the parameters on the diurnal variation of curvature are considered, and for the time of maximum curvature, on the distribution of temperature and stresses of composite box girder sectional are considered. Finally, some considerations about the influence of the parameters on the daily maximum values of axial deformation, curvature and stresses are carried out. The influence of thermal effect on structures is important as much as the influence of live or dead load in some cases. In the design of steel composite bridges, the thermal stresses calculated on the supposition that the temperature difference between the concrete slab and steel girder is $10^{\circ}C$ and the temperature distributions are uniform in concrete slab and steel girder can be underestimated.

  • PDF

Application of DNA microarry : Comparative functional genomic approach

  • Chu In-Sun
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.109-114
    • /
    • 2006
  • 최근 Human 지놈 프로젝트를 포함한 다양한 종의 지놈 프로젝트가 수행되고 수많은 지놈정보가 생산되고 있으며 이를 해석하고 서로 연관성를 찾기 위한 다양한 연구가 진행되고 있다. 즉 최신 생명공학과 관련된 연구방향이 DNA의 구조적 해석에서 기능 해석과 유전자들의 상호연관성을 규명하는 방향으로 변화하고 있으며 이를 위한 강력한 도구로서 DNA microarray (DNA chip)는 방대한 양의 지놈 정보를 이용하여 단시간에 대량으로 고속처리하여 효율적으로 유전자 기능을 분석할 수 있는 주목받고 있는 방법이다. DNA microarray 실험과 분석에 있어 데이터분석, 재현성, 종간의 비교, 확인실험 및 비용 등의 문제가 있지만 유전자발현양상 데이터로부터 정확한 환자의 예후를 예측할 수 있는 비교적 적은 유전자 그룹의 진단마커를 찾거나, 하나의 유전자가 아니라 mouse 전체 지놈의 유전자발현 패턴을 인간의 암을 위시한 각종 질병 연구를 위한 발현 신호나 변화 등을 발견하여 신약개발 등에 활용하고자 하는 시도가 활발히 진행되고 있다. 서로 다른 종간에 비슷한 phenotype의 유전자발현도 진화적으로 보존되었다는 전제 하에서 지놈 sequence의 비교연구가 가능하고 DNA microarray 발현 데이터에 근거하여 독립적으로 각 종간의 유전자발현패턴을 비교함으로써 난치병 등을 새롭게 분류할 수 있다. 즉, 암세포 등에서 유전자발현 양상은 유전학적, 환경적 alteration들이 잘 반영되어 있다고 간주하고, 이러한 양상을 바탕으로 인간의 암을 위시한 다양한 질병 연구를 위한 최적의 mouse 모델을 찾을 수 있고, 이는 결국 새로운 치료 방법 개발이나 맞춤의학 실현에 중요한 역할을 할 것으로 기대된다. 특히 pathway 타겟으로 하는 치료를 위해서는 Human-mouse 비교를 통한 발현 신호를 찾는 것이 진단에서는 매우 유용한 방법이다. 이를 위한 고성능의 분석방법이나 시스템의 개발이 중요하게 된다.. 관류의 정도와 조영증강정도를 중심으로 관류 MR 영상소견과 조직학적 소견을 관련지어 분석하였다. 결과: 조영증강 T1강조MR영상에서 환상조영증강을 보이는 다형성 교보세포종 2예에서는 변연부 외륜이 고관류를, 중심부의 괴사부위는 저관류로 나타났다. 저등급 교종은 경계가 불분명한 저관류부위로 보였다. 뇌농양 2예는 변연부 외륜이 경도의 고관류를, 중심부는 저관류로 나타났다. 뇌수막종은 미만성의 균일한 중등도 혹은 고도의 고관류로 보였으며, 임파종과 배아종은 경계가 명확한 저관류부위로 나타났다. 신경세포종은 종괴\ulcorner 일부에 중등도 혹은 고도의 고관류부위가 관찰되었고, 전이암은 다수병변중 일부에서 중등도의 고관류를 보였다. 방사선괴사는 저관류부위내에 국소적 고관류부위를 보였다. 결론: 관류 MR영상은 뇌종양의 관류상태를 비교적 잘 반영하며, 조직학적 특성을 예측하는데에 도움을 주 수 있을 것으로 기대된다. 뇌종야에서의 관류MR영상의 분명한 역할을 규명하기 위해서는 앞으로 더 많은 임상적 연구가 필요할 것으로 생각된다.조증 환자의 자극성 전타액내 lactobacilli양은 peroxidase system을 함유한 세치제를 사용한 군에서 대조군에 비해 상대적으로 낮게 나타났으나(p = 0.067) 통계학적 유의성은 없었다.같은 예에서 찾아 볼 수 있다. 첫째, 발음상으로 동사의 변화형에서 "porte[$p{\jmath}rte$](들다: 현재형), porte[$p{\jmath}rte$](과거분사형), porta[$p{\jmath}rte$](단순과거형)"등이 대립되며, 이휘 "Porto[$p{\jmath}rte$](포르토)"와도 대립된다. 둘째, 어휘적 대립 "le haut[$l{\partial}o$](위)/l'eau[lo](물)"와 형태론적 대립 "le[$l{\partial}$](정관사, 남성단수)/l

  • PDF

3D Pose Estimation of a Human Arm for Human-Computer Interaction - Application of Mechanical Modeling Techniques to Computer Vision (인간-컴퓨터 상호 작용을 위한 인간 팔의 3차원 자세 추정 - 기계요소 모델링 기법을 컴퓨터 비전에 적용)

  • Han Young-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.4 s.304
    • /
    • pp.11-18
    • /
    • 2005
  • For expressing intention the human often use body languages as well as vocal languages. Of course the gestures using arms and hands are the representative ones among the body languages. Therefore it is very important to understand the human arm motion in human-computer interaction. In this respect we present here how to estimate 3D pose of human arms by using computer vision systems. For this we first focus on the idea that the human arm motion consists of mostly revolute joint motions, and then we present an algorithm for understanding 3D motion of a revolute joint using vision systems. Next we apply it to estimating 3D pose of human arms using vision systems. The fundamental idea for this algorithm extension is that we may apply the algorithm for a revolute joint to each of the revolute joints of hmm arms one after another. In designing the algorithms we focus on seeking closed-form solutions with high accuracy because we aim at applying them to human computer interaction for ubiquitous computing and virtual reality.

Reinforcing Method for the Protective Capacities of Dispersal and Combat Facilities using Logistic Regression (로지스틱 회귀모형을 활용한 소산 및 전투시설의 방호성능 보강방안 연구)

  • Park, Young Jun;Park, Sangjin;Yu, Yeong-Jin;Kim, Taehui;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • This study provides the numerical model to assess retrofit and strengthen levels in the dispersal and combat facilities. First of all, it is verified that direct-hitting projectiles are more destructive to the structures rather than close-falling bombs with explosion tests. The protective capacity of dispersal and combat facilities, which are modeled with soil uncertainty and structural field data, is analyzed through finite element method. With structural survivability and facility data, the logistic regression model is drawn. This model could be used to determine the level of the retrofit and strengthen in the dispersal and combat facilities of contact areas. For more reliable model, it could be better to identify more significant factors and adapt non-linear model. In addition, for adapting this model on the spot, appropriate strengthen levels should be determined by hands on staffs associated with military facilities.