• 제목/요약/키워드: 구조 마찰

Search Result 792, Processing Time 0.03 seconds

Characteristics of velocity-dependent shear behavior of saw-cut rock joints at different shear velocities (편평한 암석절리면의 속도 의존적 전단거동 특성)

  • Park, Byung-Ki;Lee, Chang-Soo;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 2007
  • Recently, the probability of rock joints being exposed to free faces is getting higher for the scale of rock mass structures gets larger. Also, the frequency of occurring dynamic events such as earthquakes and blasting has been increasing. Thus, the shear behavior of rock joints under different conditions needs to be investigated. In this study, a series of direct shear tests were carried out under various conditions to examine the velocity-dependent shear behavior of saw-cut rock joints. Two types of direct shear test were carried out. The first was to examine the velocity-dependent shear behavior of saw-cut rock joints at seven different shear velocities, each with three different normal stresses. The second was to examine the shear behavior of saw-cut rock joints when three different instantaneous shear velocities changed. As a result, the coefficient of friction was affected by normal stress. The breakpoint velocity, the point when the change of shear velocity starts to affect the frictional behavior, became lower as normal stress increased. Also, as the shear velocity became lower, the degree of stress-drop on stick-slip behavior became larger. As a result of examining the changes of friction coefficient, velocity weakening (decrease of friction coefficient) was observed. The decrement of friction coefficient due to the changes of shear velocity under slow shear velocity was larger than that under fast shear velocity.

  • PDF

Investigation of Friction Characteristics between Concrete Slab and Subbase Layers (콘크리트 슬래브와 보조기층 사이의 마찰특성 조사)

  • lim, Jin Sun;Park, Moon Gil;Nam, Young Kug;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.719-726
    • /
    • 2009
  • In this study, a series of push-off tests for lean concrete, aggregate, asphalt subbases mainly used in Korea were performed to investigate the friction characteristics between the slab and subbase layers. Use of separation membrane and wet condition of subbase were other parameters in the tests. Horizontal displacements of the slabs and friction coefficients were measured at 1st loading, stable condition (2nd and 3rd loadings), and wet condition (4th loading) by applying 40mm/hour horizontal loadings. Larger maximum friction coefficients were measured in order of the lean concrete, asphalt, aggregate, and subbases using the separation membrane at 1st loading, and in order of the asphalt, aggregate, lean concrete, and subbases using the separation membrane at stable and wet conditions. The friction coefficients of the aggregate and asphalt subbases which did not used the separation membrane decreased by the wet condition while the subbases using the separation membrane were not affected. Additional push-off tests for effects of slab thickness and temperature sensitivity of asphalt will be performed. And, effects of the friction characteristics between the slab and subbase layers on behavior and performance of concrete pavements will be investigated by structural analyses using the test results.

Experimental study on pullout performance of structural fiber embedded in cement composites according to fineness modulus of fine aggregate (시멘트 복합체에 근입된 숏크리트용 구조 섬유의 잔골재 조립률에 따른 인발성능 비교)

  • Choi, Chang-Soon;Lee, Sang-Don;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.317-326
    • /
    • 2022
  • This research performed single fiber pull-out test to evaluate the effect between fineness modulus of cement composites and the fiber bond performance (bond strength and pull-out energy). A synthetic fiber (polypropylene) and a steel fiber (hooked ends type) were inserted in the middle of dog bone shape specimens which were designed with fine aggregates of F. M. 1.96, 2.69, 3.43. The experiment results showed bond strength and pullout energy of synthetic fiber are improved as fineness modulus of cement composites increases. It is considered that the frictional resistance between synthetic fiber and cement composite increases as fineness modulus of cement composite increases and consume more energy while pull out the fiber from cement composite. However bond performance of steel fiber which resist pull out by mechanical behavior is less effected on fineness modulus of cement composite. It is considered that the mechanical fixedness of hooked ends exerts a greater effect on the pullout resistance than the frictional resistance between the cement composite and the steel fiber so F. M. of fine aggregate has a relatively small effect on the pullout resistance with the steel fiber.

A Study of the Wave Control Characteristics of the Submerged Breakwater using VOF Method in Irregular Wave Fields (VOF법에 의한 불규칙파동장에 있어서 잠제의 파랑제어 특성에 관한 연구)

  • 김도삼;이광호;허동수;유현상
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.283-289
    • /
    • 2003
  • 잠제는 수면 아래에 건설되는 대표적인 친환경의 해안ㆍ항만구조물로 일본을 위시한 외국에서는 이안제 등과 같은 대체표사제어구조물로 잠제를 다수 시공해 왔으며, 국내에서는 처음으로 부산시의 송도해수욕장에 해안침식방지를 위해 잠제를 건설하고 있다. 잠제에 의한 파랑제어의 주요한 메커니즘은 천단상에서의 입사파랑과 구조물과의 마찰 및 입사파랑의 강제쇄파에 의한 에너지 소산이다. (중략)

  • PDF

Evaluation on Structural Performance of Two-nodal Rotary Frictional Component (2절점 회전형 마찰요소의 구조성능 평가)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.51-57
    • /
    • 2015
  • Various hybrid dampers have been developed in Korea to control the vibration due to a wind and earthquake. In order to minimize the installment space, cost and construction process, the new hybrid friction damper is developed. This hybrid damper is composed of several rotary friction components having two frictional joint. Because of these components, the building vibration due to wind and earthquake can be mitigated by hybrid friction damper. In this paper, various dependency tests were carried out to evaluate on the structural performance of two joint rotational friction component of the hybrid damper. Test results show that two joint rotational components do not depend on a displacement and a frequency of forcing but friction coefficients is reducing as a clamping force is increasing.

Fatigue Performance Evaluation of High-strength Bolt Used for Marine Transport Plant Structures (해상 운송 플랜트 구조물의 고장력 볼트 피로성능 평가)

  • So, Jaehyuk;Oh, Keunyeong;Park, Kwansik;Kim, Sun woo;Lee, Kangmin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.89-98
    • /
    • 2017
  • The offshore plant structure has been transported to the site by barge because it is hard to manufacture in site. When the structure was transported on the sea, offshore plant structures and connection were experienced repetitive submarine load. For this reason, it was known for that the axial force of high-strength bolted connection was declined. Therefore, in this study, high-strength bolted connection was evaluated the shear fatigue performance under longtime fatigue load during marine transport. The experimental variables were selected intial axial force, surface type, and bolt type because they ar important factors in the change of axial force of bolts. As a experimental results of considering various variables, the variation of axial force showed within 1%. Therefore, the high-strength bolted connection was verified structural safety under longtime fatigue load.

Development of ETMD(Electromagnetic Tuned Mass Damper) for Smart Control of Structure (구조물 스마트제어를 위한 ETMD(Electromagnetic Tuned Mass Damper)개발)

  • Jeon, Seung-Gon;Heo, Gwang-Hee;Lee, Chin-Ok;Lee, Jae-Hoon;Kim, Dae-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2022
  • The TMD has a simple structure than other vibration control devices and shows excellent control performance for the simple harmonic vibration generated in the structure. However, the vibration control range is narrower than other control devices, making it vulnerable to vibration cycles caused by unexpected external loads. The ETMD developed in this study consisted of Mass with electromagnets. Therefore when supplying a current, the magnetic field is formed to increase the friction force with the friction plate, thereby instantaneously controlling the behavior of the Mass. The experiment was conducted to compare the control performance of the control device by installing the ETMD developed for control performance evaluation in the center of the model simple beam bridge to forced excitation at 3.02 Hz where the maximum bending displacement occurs. As a result of the experiment, ETMD exhibited excellent control performance with a maximum bending displacement attenuation rate of 57.51%.

An Experimental Research on the Shear Friction Behavior of Beam-Column Joints of Partial Precast Concrete Structures (부분PC 보-기둥 접합부의 전단 마찰 거동에 관한 실험 연구)

  • Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • An experimental program was initiated to investigate the structural capacity of PC (Precast Concrete) beam-column joints used for the underground parking structure. Static testing of 4 typical PC beam-column joints specimens was conducted. Specimens were designed to span a range of parameters typically encountered for such members, based on findings from the survey of existing PC joint details used in the construction fields in Korea. The specimens were four by their joint types and testing parameters. The specific structural behavior germane to each specimen, and general observations on overall member behavior as a function of the considered parameters, are reported. From the results of tests on four PC joints specimens, the beam-column joints of PC structure used for the underground parking building was found to have similar structural capacities when comparing to the cast-in-place concrete system.

A Study on the Fracture Resistance Characteristics of Post-Installed Anchor (후설치 앵커볼트의 파괴저항 특성에 관한 연구)

  • Kim, Doo Hwan;Hwang, Yun Sung;Cha, Young Min;Song, Kwan Kwon;Choi, Kyung Gyp
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.156-156
    • /
    • 2011
  • 중량물 혹은 철골구조물 등을 고정시키는데, 건축구조물의 철골기둥, 터빈 제네레이터 기기등을 콘크리트 구조물에 부착시키기 위해 널리 쓰인다. 1990년대 들어 국내 건물의 리모델링, 보수 및 유지관리의 증가에 따라 앵커의 사용량도 현저히 증가하고 있으나 대부분 고가의 외국산제품을 수입하고 있다. 현재 국내외에 주로 시행되는 앵커타입은 마찰형 앵커이나 마찰형 앵커와 달리 지압형 앵커의 경우, 외국에서는 이미 그 유효성에 대한 인식이 널리 퍼져있으며 각국의 지반조건에 적합한 설계법이 개발되었다. 그러나 국내의 경우 이러한 연구가 미진한 실정이며 이에 대한 연구가 절실한 상황이다. 본 연구에서는 중량물앵커(Heavy Duty Anchor)의 인장시험을 실시하여 내력을 규명하고 도출한 결과를 기존 시험연구 결과와 비교분석하여 기 제안된 이론식들과 사업경제성에대해 보다 깊이있고 정확한 적용성을 입증하는데 본 연구를 수행하였다. 시험을 통한 저강도 파괴시험의 결과 구조부재의 접합부에서 각 시험체마다 뽑힘파괴가 발생하였으며, 뽑힘파괴가 발생한 시험체는 앵커강재의 파괴력 또는 콘크리트의 콘파괴를 발생시키기에는 앵커슬리브의 확장력이 작게 작용되었다. 그 결과, 콘파괴 대신 구조부재의 접합부에서 뽑힘파괴가 발생되었으며 이를 통해 설계시, 앵커의 안정성을 증가시키기 위해 구조부재의 접합부를 연성적이며, 부가여력을 충분히 지니도록 설계하는 것이 효과적인 것으로 나타났다. 고강도 파괴시험의 결과 콘파괴가 발생되었음을 알 수 있는데, 본 시험에 사용된 앵커의 경우 정착위치가 구조물의 연단 모서리 거리와 너무 근접하여 앵커의 내력이 감소하게 되어 콘크리트의 콘강도가 발생되기 전에 먼저 파괴되었다. 따라서 설계시, 앵커의 파괴강도를 증가시키기 위해 앵커의 정착위치를 고려한 설치를 통해 앵커체결과정에서 적정 연단거리를 확보하는 것이 효과적인 것으로 나타났다. 앵커볼트 최소간격과 연단거리에 따른 파괴시험결과 앵커볼트의 간격이 허용범위 내에서 넓어질수록 불균등 부반력의 차는 감소하였으며, 최대 부반력도 감소하였다. 따라서 앵커의 파괴저항강도를 증가시키기 위해서는 허용범위 내에서 앵커볼트의 설치간격을 증가시키는 것이 효과적인 것으로 나타났다.

  • PDF

Behavior and Strength of Rib Stiffened SC Wall-slab Connection (리브 보강된 SC구조 벽-바닥 접합부의 거동 및 내력 평가)

  • Park, Joung Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.349-359
    • /
    • 2014
  • Until now, wall-slab plate of steel plate concrete has been constructed by joint. But, the shear plate has problems in the workability as well as structural integrity. This study investigates the behavior and strength of rib stiffened SC wall-slab connection. Seven prototype specimens of wall-slab connections were fabricated and tested. the structural safety of the specimens was confirmed through the monotonic loading test. Based on the experimental observations, this study propose the strength formula of the joint was proposed. To enhance the reliability of the proposed strength formula, analytical verification was performed through inelastic finite element analysis. Effect of parameters, such as, load point, friction coefficient, on the joint strength was examined. The proposed formula yields a conservative value for most cases.