• Title/Summary/Keyword: 구조진동제어

Search Result 711, Processing Time 0.027 seconds

Four Pollution & Safe Measure in Building Demolition (구조물폭파공법 시공시 발파공해안전대책 -소음.진동.분진.비석공해를 중심으로-)

  • 안명석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.153-173
    • /
    • 1993
  • 폭약은 탄광에서 석탄이나 각종 광물을 캐거나, 건설토목현장에서 암반 제거를 위해서 주로 사용되었다. 전쟁에서 군사용으로 파괴를 위한 목적으로 사용되기도 하였으나, 최근의 동서화해 분위기와 남북통일이 무르익는 시대적 조류로 볼때 더이상 파괴용으로의 사용은 제어될 것이고 이제는 평화를 위하여, 건설을 위하여, 산업발전을 위하여 더 많이 사용되어지고 응용되어질 것이다. 작금의 첨단산업의 발달과 산업의 고도화로 우리 화약 업계에도 첨단발파기술의 개발에 많은 관심과 연구.개발을 진행중이다. 첨단발파기술의 응용사례를 소개하면, 건축토목 분야에서 노후 고층빌딩 및 굴뚝의 철거, 노후 교량 및 공장시설의 철거등에 활용되고 있으며, 위락서비스 분야에서 응용으로는 불꽃놀이를 들 수 있다. 최근에는 첨단 과학 장비를 이용하여 각종 꽃불의 모양이 음악과 미술등 예술적인 기능을 기억시킨 컴퓨터를 활용하여 보다 고차원의 공예술품(공학-예술)을 만들어낸다. 아울러 각종 기공식 발파시에도 예술적 기능과 웅장함을 가미하여 그 화려함을 극치에 다다르게 한다. 그외에도 로켓트 발사추진제등의 우주 개발에의 응용, 석유시추등 해양개발에의 응용, 각종 공학 실험연구에의 응용, 폭발 가공에의 응용, 의학에의 응용, 철강산업에의 응용 등으로 그 숫자를 이제는 일일이 나열하기 힘들 정도로 광범위해졌다.

  • PDF

Designs and Tests for the Vibration Control of Full-Scale Steel Frame Structure with Added Viscoelastic Dampers (실 구조물 진동제어를 위한 점탄성 댐퍼 설계 및 적용 실험)

  • Jeoung Jeoung Kyo;Kim Doo Hoon;Kim Young Chan;Park Jin Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.369.1-369
    • /
    • 2002
  • In order to verify the effectiveness of adding viscoelastic dampers to full-scale steel frame structure on the reduction of their seismic and wind response, a experimental work was carried out. First, The test was conducted on the VE dampers subjected to sinusoidal excitations under a variety of ambient temperatures, frequency, and the damper strain. Results from these tests showed that the viscoelastic dampers have high energy dissipation capacity Second, (omitted)

  • PDF

Intelligent Control of Structural Vibration Using Active Mass Damper (능동질량감쇠기를 이용한 구조물 진동의 지능제어)

  • Kim, Dong-Hyawn;Oh, Ju-Won;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.286-290
    • /
    • 2000
  • Optimal neuro-control algorithm is extended to the control of a multi-degree-of-freedom structure. An active mass driver(AMD) system on the top roof is used as an exciter. The control signals are made by a multi-layer perceptron(MLP) which is trained by minimizing a sub-optimal performance index. The performance index is a function of both the output responses and the control signals. Structure having nonlinear hysteretic behavior is also trained and controlled by using proposed control algorithm. In training neuro-controller, emulator neural network is not used. Instead, sensitivity-test data are used. Therefore, only one neural network is used for the control system. Both the time delay effect and the dynamics of hydraulic actuator are included in the simulation. Example shows that optimal neuro-control algorithm can be applicable to the multi-degree of freedom structures.

  • PDF

Vibration Control of Real-Size Steel Structure by Hybrid Linear Motor Damper (혼합형 리니어 모터 댐퍼를 이용한 실규모 철골 구조물의 진동제어)

  • 정정교;김두훈;박해동;박진일;정태영;문석준;임채욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.740-745
    • /
    • 2002
  • To control vibration of real-size steel structure, a hybrid-type linear motor damper was designed and applied to 30m steel structure at UNISON. The LMD was tuned to the first mode natural frequency of the building. In order to use for simulation data and control parameters, dynamic response characteristics of building and damper were tested. The response of building was reduced by 10 dB with LMD and H$\infty$ algorithm. This value was similar to the result of simulation.

  • PDF

Active Micro-Vibration Control of a Structure by Using a Pair of Piezoelectric Actuators (한쌍의 압전형 구동기를 이용한 구조물의 능동 미소 진동 제어)

  • 김미경;지원호;이종원
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.373-382
    • /
    • 1993
  • Active micro-vibration control of a structure, which simulates a stepper device, is performed using a pair of piezolectric actuators. The control aims at reducing the translational and rotational vibrations of the upper plate when the base is subject to seismic disturbance and the upper plate undergoes impulsive transient motion. Using the experimentally determined model, derivative control scheme is adopted so that the damping of the closed-loop system is effectively increased. It is found that the predicted control performance is in good agreement with the experimental results. Finally, the limit cycle phenomenon due to the controller voltage saturation is compared with the simulation.

  • PDF

Application of Linear Oscillatory Actuator to Active Structural Vibration Control (Linear Oscillatory Actuator를 이용한 구조물 진동의 능동제어연구)

  • 정태영;문석준;정종안;박희창;장석명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.248-254
    • /
    • 1996
  • In this paper active vibration control system using a linear oscillatory actuator (LOA) is studied to suppress structural vibration. Being compared with a hydraulic actuator, a LOA has simplified structure and requires a few elements, so it has lots of merits with respect to economics and maintenance. Performance test of active vibration control system using LOA is carried out on a steel test structure under base excitation. From this test it is confirmed that acceleration level of test structure is reduced near the resonance region. In the future research on the application to large to structures will be studied.

  • PDF

Development of the vibration control devices and the optimal base-isolation design system for Structures (구조물 진동제어장치 개발 및 최적 면진설계 시스템 개발)

  • Kim, Byung-Hyun;Chung, Jung-Hoon;Moon, Seok-Jun;Huh, Young-Cheol;Chung, Jong-Ahn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.375-380
    • /
    • 2004
  • Seismic Isolation and Shock/vibration Control Laboratory has performed the National Research Laboratory(NRL) project, 'Design and Application of Control Devices against Earthquake/Shock/Vibration'. In this project, the prototypes of the vibration control devices for structural control against earthquake and wind were developed and verified their performances. And also, the computer programs were developed for the seismic response analysis and the optimum design of the base-isolated structures with vibration control devices. This paper introduces the developed vibration control devices and computer programs.

  • PDF

Vibration Control of Flexible Structures using ER Fluid Dampers (ER댐퍼를 이용한 유연 구조물의 진동제어)

  • 이재홍;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.243-247
    • /
    • 1996
  • This paper presents a vibration control of a flexible structure using a controllable ER fluid damper. A clamped-clamped flexible structure system supported by two short columns mimicking a small-sized bridge system is considered. An ER fluid damper which is operated in shear mode is designed and attached to the middle of the flexible structure. The governing equation of motion and associated boundary conditions are derived from Hamilton's principle. A sliding mode control is formulated in order to actively suppress the vibration of the structure due to external excitations. Experimental control results are presented in the frequency domain.

  • PDF

A Study on the Adaptability of Hybrid Mass Damper for the Vibration Control of Structure under Base Excitation (지반 기진력을 받는 구조물의 진동 제어를 위한 Hybrid Mass Damper 의 유용성 연구)

  • Lim, Chae-Wook;Chung, Tae-Young;Moon, Seok-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.268-275
    • /
    • 2000
  • A hybrid mass damper that combines a tuned mass damper and an actuator has been recognized to be one of the most promising devices for vibration control of a tall building subjected to dynamic loads such as wind and earthquake. In this paper, in order to reduce vibration levels of a 5-story test structure, a hybrid mass damper using AC-servomotor was designed and developed. And control performances using HMD and TMD under random and earthquake excitations are compared through experimental test. It is confirmed that it is more effective to reduce the vibration levels of the test structure using HMD especially for earthquake excitation.

  • PDF

Vibration Control of Large Scale Structure with Beam-End Rotation Type Friction Damper (보단부 회전형감쇠기를 이용한 대형구조물의 진동제어)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.452-458
    • /
    • 2007
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module (VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

  • PDF