• Title/Summary/Keyword: 구조적판별

Search Result 348, Processing Time 0.029 seconds

A Technique for detecting a person hidden behind an object in a fire situation (Guided Attention Mechanism을 활용한 화재사고 시 물체에 가려진 사람 탐지 기법)

  • Yeon-Jun Yoo;;Yong-Tae Shin
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.740-742
    • /
    • 2023
  • 객체 인식 연구에 있어서 딥러닝 기반의 사람 인식에 있어서 많은 연구들이 공개되고 있다. 특히 화재사고에 있어서 연기로 인해 가시성이 떨어져 인명구조에 어려움이 발생한다. 이에 열화상 카메라와 딥러닝을 통해 사람을 인식하는 기술이 연구되고 있다. 기존 연구에서는 열화상 카메라와 YOLO 딥러닝을 통해 사람을 인식하는데 95%의 성능을 보였지만, YOLO는 그리드 셀에서 하나의 분류만하기 때문에 물체에 가려진 사람을 판별하는데 정확도가 낮았다. 본 논문에서는 이와 같은 한계를 극복하기 위해 기존 Faster R-CNN 알고리즘을 사용한다. 신체부위 Guided Attention mechanism을 사용하여 가중치를 준 Feature Map을 RPN에 적용시켜 학습모델을 구현한다면 더 높은 정확도를 얻을 수 있다. 향후 본 논문에서 제안하는 기법은 많은 실험과 다양한 데이터 셋을 통해 실질적인 검증을 할 예정이다.

Analysis of Nonlinear Dynamical Behavior for the Daily TOC Time Series in a River (하천의 일TOC 시계열 자료의 비선형 동역학적 거동 분석)

  • Oh, Chang-Ryol;Jin, Young-Hoon;Park, Sung-Chun;Jung, Woo-Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1032-1036
    • /
    • 2006
  • 본 연구에서는 영산강 본류를 대표하는 나주지점을 대상으로 하여, 해당 지점에서 자동 측정되고 있는 수질 항목들 중에서 총유기탄소(TOC: Total Organic Carbon)의 시계열 자료에 대한 비선형 동역학적 거동을 파악하고자 하였다. 1994년 낙동강에서의 수질오염 사고 이후 4대강 유역에서 설치.운영되고 있는 수질자동 측정망의 TOC 자료를 일자료로 환산하여 사용하였으며, 시계열 자료에 비선형 동역학적(카오스적) 특성이 존재하는지를 알아보기에 앞서 자료의 전처리 과정으로써 3가지의 잡음제거 방법을 적용하였다. 잡음이 제거된 시계열 자료에 비선형 동역학적 거동의 파악을 위해 보편적으로 사용되고 있는 상관차원분석을 실시하였다. 또한 상관차원분석 결과 비선형 동역학적 거동을 나타내는 것으로 판별된 자료에 대하여 그 양상을 가시적으로 알아보기 위해 지체시간$(\tau)$을 적용하여 3차원 위상공간에 도시하였다. 본 연구의 결과, 나주지점에서 측정되고 있는 총유기탄소에 대해 비선형 잡음제거 방법을 적용한 자료가 비선형 동역학적 거동을 내재하고 있는 것으로 나타났으나, 이를 위상공간에 재건하였을 경우 이상한 끌개(strange attractor)의 뚜렷한 구조가 보이지 않았다. 그러나 상관차원분석 결과 잡음이 제거된 자료가 카오스적 특성을 보이므로, 자료의 단기예측을 위한 방법에 기초적인 정보를 제공할 수 있을 것으로 기대된다.

  • PDF

Methods for screening time series data according to data quality and statistical status (품질 및 조건 기반 시계열 데이터 선별 활용 방법)

  • Moon, JaeWon;Yu, MiSeon;Oh, SeungTaek;Kum, SeungWoo;Hwang, JiSoo;Lee, JiHoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.399-402
    • /
    • 2022
  • 본 논문에서는 불완전한 시계열 데이터를 활용하기 전 데이터를 선별하여 활용하는 방법을 소개한다. 시계열 데이터의 품질은 수집 네트워크와 수집 기기의 시간적 변화와 같은 가변적 상황에 의존적이므로 불규칙적으로 이상 혹은 누락 데이터가 발생한다. 이때 에러를 포함하였다는 이유로 일괄적으로 데이터를 제거하여 활용하지 않거나, 혹은 누락 데이터의 구간을 조건 없이 복원하여 활용한다면 원하지 않는 결과를 초래할 수 있다. 제안하는 방법은 시계열 데이터의 구간에 대한 누락 데이터의 통계적 정보를 축출하고 이에 기반하여 활용 목적과 활용 가능한 품질의 기준에 부합하지 않는다면 활용 불가능한 데이터라고 판별하고 미리 분석 등의 데이터 활용 시 자동 제외하는 구조를 제안하고 실험하였다. 제안하는 방법은 활용 목적과 상황에 적응적으로 누락 값을 포함하는 데이터의 빠른 활용 판단이 가능하며 보다 나은 분석 결과를 얻을 수 있다.

  • PDF

The Development of Neural Network Model to Improve the Reliability of the Demand/Effort Model for Evaluating Highway Safety (도로위험도를 평가하는 요구/노력모형의 신뢰도 향상을 위한 신경망 모형 개발)

  • Jeong, Bong-Jo;Gang, Jae-Su;Jang, Myeong-Sun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Traffic accidents on highways are likely to happen when there is an imbalance in the complex relationships among key elements such as road geometries, driver related factors, and mechanical performances. The Demand-Effort Model (DEM), which evaluates highway safety, can be explained by the imbalance, which occurs when the level of demand of the driver's attention to the road environment exceeds that of the response from the driver. This study suggests a new model that improves the reliability of the current DEM through the reinterpretation on the physiological signals with the help of the Neural Network Model (NNM). The data were collected from 149 subjects, who drove a test vehicle on the Yongdong, Honam, and Seohaean Expressways in Korea. Three important results could be drawn from the recursive tests as follows; (1) Only 5 out of 10 parameters on the physiological signals which are currently used were proven to be meaningful through the Normality Test, Cluster Analysis, and Mann-Whitney Analysis. (2) The revised DEM, which internally uses the NNM, showed more reliable results than existing DEM. Group 1, which is based on the new DEM showed 80.0% of accuracy in measuring the level of driver's efforts, however, that of Group 2 based on the current DEM was 74.3%. (3) Field tests on the Honam Expressway showed lower 'type II error' with the new DEM (40.5%) than the old DEM (58.8%). The DEM is designed as a quick and easy way to determine highway safety prior to the minute road safety audit (RSA) by a professional audit team. Then a new DEM, which is based on the NNM, needs to be considered since it showed higher reliability and lower error.

A study of interrelationships, and effects on withdrawal intention of social workers' commitment forms (사회복지사의 근로몰입 유형간 상호관계와 이탈의도에 미치는 효과 비교)

  • Kang, Jong-soo
    • Korean Journal of Social Welfare Studies
    • /
    • no.37
    • /
    • pp.267-294
    • /
    • 2008
  • Social workers experience various work commitment forms in the field practice. This study tries to find the discriminant validity of job, organizational, career, and relationship commitments among these work commitment forms. This study also tries to find the interrelationship among these commitment forms and the relationship of each of four commitment forms with the withdrawal intention, which is represented by turnover intention and career change intention. For this purpose, a survey of 417 social workers working for community welfare centers in Busan and Gyeongnam was conducted and the data was analyzed. The results of this study showed that the work commitment forms have discriminant validity. The analysis of interrelationship between commitment forms using SEM revealed that the more a social worker commits to his or her job, the more he/she commits to his/her job and the relationship with the client. In addition, job and organizational and career commitments affect turnover intention while career and relationship commitments affect career change intention. Therefore, to improve organizational management, it is necessary to understand diverse forms of work commitment as well as organizational commitment. And differentiated management strategies are needed to increase either each commitment form or various commitment forms at the same time.

Development of Hydrologic Data Aquisition and Management System(HDAMS) in Anyangcheon watershed (안양천 유역의 실시간 수문모니터링 자료관리시스템 개발)

  • Lee, Kyoung-Do;Kim, You-Jin;Kim, Nam-Il;Lee, Kil-Seoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2029-2033
    • /
    • 2007
  • 오늘날 특정 유역에서의 수문현상 및 수문순환에 대한 분석을 위한 연구가 활발히 진행되고 있다. 이를 위해서는 수문자료의 관측은 반드시 수반되어야 하며, 관측자료의 품질관리 및 원시자료의 관리 등이 요구되고 있는 실정이다. 관측된 수문자료의 품질관리라 함은 자료의 신뢰도 분석과 자료의 보완의 두 과정을 포함한다. 여기서, 신뢰도 분석이라 함은 자료 속에 포함된 불확실성을 판별하는 작업을 의미하며, 자료의 불확실성은 위에서 언급된 자료의 불충분 및 불안정을 제외한 부정확, 불일관성에서 비롯된다. 자료의 보완이라 함은 자료의 신뢰도 분석을 통하여 자료 속에 포함된 불확실한 성분들을 찾아내고, 이를 제거한 후 완전한 자료로 대체하고, 자료가 결측된 경우 공백을 연결함으로써 자료의 완전성을 유지하거나 또는 불충분한 자료를 확장하는 일련의 보완작업이라고 정의한다. 자료의 품질을 결정하는 주요 인자는 크게 관측소 관리의 하드웨어적인 측면과 자료 분석의 소프트웨어적인 측면이 있다. 하드웨어적인 측면에서의 수문자료 품질관리를 위해서 본 과제에서는 현장에 설치된 수위계, 강우량계의 센서 등에 대한 장비를 점검하고, 현장실측을 통해 지속적으로 측정값을 보정해주는 역할을 수행하고 있으며, 소프트웨어적인 측면에서 수문자료의 품질관리를 위해서는 수문자료의 수집 단계부터 시작하여 데이터베이스 저장, 필터링, 통계분석, 웹 및 C/S(Client Server)를 통한 배포 등의 일련의 자료 처리 과정을 수행할 수 있는 수문자료관리 프로그램을 웹 시스템과 C/S로 분류하여 정의내릴 수 있다. 본 연구에서는 수문자료의 관리자 입장에서의 보다 효율적이고 체계적으로 자료를 관리하고 분석하기 위한 방안으로 수문자료관리시스템(Hydrologic Data Aquisition and Management System, HDAMS)을 개발하였다. 이 시스템은 안양천 유역에서 시범 적용하고 있으며, 범용성을 전제로 개발되었다. 또한 수문자료 관리 프로그램의 DB 구조 및 DB 자료를 활용한 다양한 분석기능은 갖도록 설계하였으며 계획된 데이터베이스 구조를 바탕으로 계측기 인터페이스와 사용자 인터페이스, 데이터베이스 간의 연동이 원활히 이루어지도록 개발하고자 한다.

  • PDF

Functionality-based Processing-In-Memory Accelerator for Deep Neural Networks (딥뉴럴네트워크를 위한 기능성 기반의 핌 가속기)

  • Kim, Min-Jae;Kim, Shin-Dug
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.8-11
    • /
    • 2020
  • 4 차 산업혁명 시대의 도래와 함께 AI, ICT 기술의 융합이 진행됨에 따라, 유저 레벨의 디바이스에서도 AI 서비스의 요청이 실현되었다. 이미지 처리와 관련된 AI 서비스는 피사체 판별, 불량품 검사, 자율주행 등에 이용되고 있으며, 특히 Deep Convolutional Neural Network (DCNN)은 이미지의 특색을 파악하는 데 뛰어난 성능을 보여준다. 하지만, 이미지의 크기가 커지고, 신경망이 깊어짐에 따라 연산 처리에 있어 낮은 데이터 지역성과 빈번한 메모리 참조를 야기했다. 이에 따라, 기존의 계층적 시스템 구조는 DCNN 을 scalable 하고 빠르게 처리하는 데 한계를 보인다. 본 연구에서는 DCNN 의 scalable 하고 빠른 처리를 위해 3 차원 메모리 구조의 Processing-In-Memory (PIM) 가속기를 제안한다. 이를 위해 기존 3 차원 메모리인 Hybrid Memory Cube (HMC)에 하드웨어 및 소프트웨어 모듈을 추가로 구성하였다. 구체적으로, Processing Element (PE)간 데이터를 공유할 수 있는 공유 캐시 및 소프트웨어 스택, 파이프라인화된 곱셈기 및 듀얼 프리페치 버퍼를 구성하였다. 이를 유명 DCNN 알고리즘 LeNet, AlexNet, ZFNet, VGGNet, GoogleNet, RestNet 에 대해 성능 평가를 진행한 결과 기존 HMC 대비 40.3%의 속도 향상을 29.4%의 대역폭 향상을 보였다.

Adversarial learning for underground structure concrete crack detection based on semi­supervised semantic segmentation (지하구조물 콘크리트 균열 탐지를 위한 semi-supervised 의미론적 분할 기반의 적대적 학습 기법 연구)

  • Shim, Seungbo;Choi, Sang-Il;Kong, Suk-Min;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.515-528
    • /
    • 2020
  • Underground concrete structures are usually designed to be used for decades, but in recent years, many of them are nearing their original life expectancy. As a result, it is necessary to promptly inspect and repair the structure, since it can cause lost of fundamental functions and bring unexpected problems. Therefore, personnel-based inspections and repairs have been underway for maintenance of underground structures, but nowadays, objective inspection technologies have been actively developed through the fusion of deep learning and image process. In particular, various researches have been conducted on developing a concrete crack detection algorithm based on supervised learning. Most of these studies requires a large amount of image data, especially, label images. In order to secure those images, it takes a lot of time and labor in reality. To resolve this problem, we introduce a method to increase the accuracy of crack area detection, improved by 0.25% on average by applying adversarial learning in this paper. The adversarial learning consists of a segmentation neural network and a discriminator neural network, and it is an algorithm that improves recognition performance by generating a virtual label image in a competitive structure. In this study, an efficient deep neural network learning method was proposed using this method, and it is expected to be used for accurate crack detection in the future.

CRANIOFACIAL STRUCTURE AND ARCH DIMENSION OF ADULT CLASS III MALOCCLUSION (성인 III급 부정교합자의 악안면골격구조 및 치열궁형태에 관한 연구)

  • Lee, Dong-Geun;Suhr, Cheong
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.359-372
    • /
    • 1997
  • This study was conducted to discern differences of craniofacial, dentoalveolar structure and model measurements between sex and between class n openbite group and non-openbite group. The sample consisted of 49 adult patients with class Il malocclusion. 24 linear measurements, 22 angular measurements and 12 ratios were selected in lateral cephalometry. Also, arch width, length, anterior crowding, average molar relation were measured or calculated in diagnostic model. The data were evaluated by t-test and multiple discriminant analysis. The results were as follows, 1. Most linear measurements, with the exception of MnBL and AUDH, were significantly larger in male(p<0.05). but, intermaxillary relations and spatial position of maxilla and mandible relative to cranial base were not different for both sex. 2. With the exception of upper and lower anterior crowding, lower arch width, upper arch length, AMR, male exhibited significantly larger measurements in model analysis (p<0.05). 3. Size differences of maxilla and mandible between openbite and non-openbite group were not significant(p>0.05). but openbite group showed significantly increased genial angle(p<0.05), FH-CoGo(p<0.01), FH-NA(p<0.01) and FH-NB, FH-NPog (p<0.05). 4. ALFH and PUDH were larger(p<0.05) in openbite group. this result served as compensation for the spatial position of mandible relative to cranial base. AUPUDH (p<0.001) and ALPLDH(p<0.05) were lower in openbite group. upper anterior crowding was the only measurement which showed difference between openbite and non-openbite group(p<0.05). 5. For the purpose of classifying adult class n openbite and non-openbite group, multiple discriminant analysis was done genial angle, ALPLDH, AUPUDH, FH-NA were included in multiple discriminant equation. 39 cases($92.86\%$) were correctly classified when applied to the sample used in this study.

  • PDF

Test and Evaluation of the Propeller Developed for a Multi-copter with the Take-off Weight of 25 kg (이륙 중량 25 kg급 멀티콥터용 프로펠러 시험 평가)

  • Kang, Hee Jung;Kim, Taejoo;Wee, Seong-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.26-34
    • /
    • 2018
  • Structural static test and the performance test were conducted to determine whether the propeller developed for a multi-copter with the take-off weight of 25 kg satisfies the design requirement. The result of the structural test revealed that the propeller had a safety margin of 3 or more as the ultimate load and requirement load did not cause the specimen breakage. In the performance test, the propeller generated the hover thrust and maximum thrust of design requirement, and hover efficiency in the operating thrust range was greater than 0.73. Maximum hover efficiency increased by more than 3% compared to the reference propeller and electric power consumption decreased by more than 4% in the operating range. The propeller was found to be successfully developed based on the satisfaction rate of the structural strength requirement and the performance requirement.