• Title/Summary/Keyword: 구조성능시험

Search Result 1,589, Processing Time 0.024 seconds

Evaluation of Strengthening Performance of Stiff Type Polyurea Retrofitted RC Slab Based on Attachment Procedure (경질형 폴리우레아의 개발 및 보강 순서에 따른 RC 슬래브의 성능 평가)

  • Kim, Jang-Ho Jay;Park, Jeong-Cheon;Lee, Sang-Won;Kim, Sung-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.511-520
    • /
    • 2011
  • Recent studies to improve reinforcement of structures have developed stiff type Polyurea by using highly polymized compound Polyurea, but the reinforcing effect of it appears to be merely good. To find the proper usage of Polyurea as structural reinforcement, stiff type Polyurea has developed by manipulating the ratio of the components that consist flexural type Polyurea and the developed stiff type Polyurea shows higher hardness and tensile capacity. The reinforcement effect evaluation of has been performed by the polyurea applied RC slab specimens, and the reinforcement effect of the combination of fiber sheet and polyurea has been tested. The results shows that the Polyurea applied specimens have significant improvement on hardness and ductility compare to those of unreinforced. Also, the specimens that stiff type Polyurea is sprayed on fiber sheet reinforcement has higher reinforcing effect than only sheet reinforced specimens. However, the specimens that and fiber sheet attached after polyurea applied on showed that the high toughness of fiber sheet restrains the ductile behavior of Polyurea due to the high ductility, thereby the specimen suffers the concentration of load, which leads the brittle fracture behavior.

A Study on the Performance Evaluation of Precast Concrete Box Culvert with Blast Furnace Slag (고로슬래그를 이용한 프리캐스트 콘크리트 박스암거의 성능평가에 관한 연구)

  • Kim, Doo Hwan;Jung, Jun Young;Kim, Sung Pil;An, Man Bok;Tae, Gi Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.157-157
    • /
    • 2011
  • 프리캐스트 콘크리트 박스 암거는 현장 타설식 암거에 비해 구조물의 고품질화 및 반복적인 대량생산으로 원가 절감과 건식화 시공으로 인한 공정의 단순화와 공기가 단축되는 이점을 지니고 있다. 따라서 본 연구는 상재 허용하중을 확보하고, 시공성 및 내구성이 뛰어나며, 경제성을 고려한 고성능 프리캐스트 박스 암거를 개발하고 향후 고성능 프리캐스트 박스 암거를 생산하기 위한 기초적인 자료를 제시하고자 하였다. 본 연구에서는 기존의 보통 포틀랜드 시멘트를 이용한 프리캐스트 박스 암거의 경제성 및 내구성, 강도특성을 개선하고자 고로슬래그를 이용하여 최적의 배합비를 산출하고, 이를 토대로 중성화, 염해, 동결융해 등의 시험을 통해 내구성을 확보하고, 휨 성능을 확인하고자 실물박스암거를 제작하여 외압강도시험을 실시하였다. 또한 구조해석을 통해 응력검토를 하였다. 내구성 검토 결과, 분말도 $6,000cm^2/g$을 가진 고로슬래그 미분말을 50%로 혼입한 콘크리트가 보통 포틀랜드 시멘트를 사용한 콘크리트보다 염화물이온 투과성에 대한 저항성 및 동결융해 저항성 등 기초물성 및 내구성이 개선됨을 알 수 있었다. 박스암거에 대한 휨 시험 결과, OPC에 비해 GFSC6의 경우는 크게 구조적 성능이 떨어지지는 않는 것으로 나타났으며, 균열양상 및 연성도에서는 우수함을 나타냈다. ABAQUS에 의한 비선형 해석 결과는 시험체의 휨 거동을 잘 묘사하는 것으로 나타났으며, 처짐의 경우 시험체의 시험결과보다 크게 나타났지만, 처짐 양상은 비슷한 것을 알 수 있었고, 벽체와 상부 슬래브에 발생하는 응력은 부재가 허용하는 균열응력값 이내로 나타남에 따라 사용하중 상태에서의 응력검토는 안전한 것으로 판단된다.

  • PDF

Performance Evaluation of Seismic Isolation using Ball Bearing (볼 베이링을 이용한 면진장치의 성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Lee, Young-Seok;Yeo, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.71-74
    • /
    • 2011
  • 최근 국제적으로 지진 발생 규모가 증대하고 있으며, 우리나라를 비롯한 많은 나라에서 구조물 및 주요 시설물에 대한 내진설계에 관심이 증대되고 있다. 지진방재는 건물자체의 안전성뿐만 아니라 내부설비 및 소장품에 대한 안전성까지 종합적으로 검토되어야 하며 이를 위한 대책이 필요한 실정이다. 본 연구의 주요목적은 예측 불가한 자연재해인 지진에 대해 일반적인 면진성능을 갖는 기초격리장치로서의 기능을 충실히 수행할 수 있는지를 확인하기 위하여 면진장치를 사용한 구조물의 면진효과를 검증하는 것이다. 또한 설계된 스프링의 탄성계수에 따른 실제 지진 시 응답의 차이를 알아보기 위하여 공진실험 및 진동대 실험을 실시하여 면진테이블 시스템의 면진성능을 평가하였다. 진동대 실험은 미국 "NEBS Requirements"에서 규정하는 요구응답스펙트럼에 상응하는 임의 지진파를 적용하였고 각각 x축과 z축 가진 후, x-y-z 축을 동시에 가진하여 수행하였다. 시험응답스펙트럼(Test Response Spectrum)은 요구응답스펙트럼(RRS)에 포락하도록 시험하여 최대가속도는 x축 방향 가진 시 90%의 감쇠효과가 나타났으며, 3축 방향 가진 시 x축 방향은 58%, y축 방향은 31%의 감쇠효과가 나타났다. 최대상대변위는 설계스트로크 140mm에 대하여 최대 85.54mm의 변위가 발생하여 안정적인 거동을 나타내었다. 본 연구에서 제안한 면진테이블 시스템은 중요 첨단장비 및 문화재 등의 전도 및 파괴를 방지하는 데 효과적일 것으로 판단된다.

  • PDF

Evaluation of Flexural Bond Performance of Hybrid Concrete Repair Materials (하이브리드 콘크리트 보수재료의 휨부착 성능평가)

  • Kim, Gyeong Tae;Kim, Sang Jun;Park, Hong Gi;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.176-181
    • /
    • 2018
  • Concrete structures are degraded physically and chemically due to various reasons after construction. Because the deterioration of concrete structure reduces the service life, reasonable repair and maintenance techniques are needed. Recently, in order to efficiently repair concrete structures, many researches on hybrid repair materials having improved adhesion performance have been carried out actively. In this study, we developed a hybrid repair material containing rapid hardening cement, PVA powder, nylon fiber, and latex to improve adhesion and water-tightness of existing concrete. The compressive strength, drying shrinkage and the adhesion strength test were carried out to evaluate the performance of the repair material. In addition, the flexure bond performance was evaluated before and after repair. From the results, the bending strength was 110% ~ 150% in all specimens except for the specimen containing only the rapid hardening cement, and all the specimens behaved with the existing concrete in the crack pattern generated by the bending strength.

A Compound Deterioration Assessment of Concrete Subjected In Freezing-Thawing and Chloride Attack (동결융해와 염해의 복합작용을 받는 콘크리트의 내구성능 저하 평가)

  • 고경택;김도겸;김성욱;조명석;송영철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.397-405
    • /
    • 2001
  • In clod weather regions, a strong seasonal wind brings sea salts to the land. In addition to it, recently, the spreading amount of deicing salts has increased numerously for purpose of removing snow and ice. Thus the salts environment around concrete structures becomes so severe that various damages of concrete due to applied salts will be brought up. Much of countries such as America, Europe etc. is carried out study for effects of deicing salts on concrete. However, there are not test methods for deterioration of concrete subjected to both freezing-thawing and chloride in Korea. In this study, we carried out test for the compound deterioration subjected to both freezing-thawing and chloride attack, to investigate the effects of sodium chloride on the deterioration of concrete. The test was performed to investigate the effects of cement type, strength and air content on the scaling deterioration of concrete. As a result, the scaling deterioration was accelerated in the presence of salts. And the resistance to scaling was strongly influenced by the type of cement, the strength and air content of concrete.

An Experimental Study on the Structural Vibration Control Using Semi-Active Orificed Fluid Dampers (반능동형 오리피스 유체댐퍼를 이용한 구조물 진동제어에 관한 실험적 연구)

  • 문석준;김병현;정종안
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2004
  • In general, control performance of the active control system is superior to that of the passive control devices. However, the active system require a large amount of external energy to operate the actuators. Semi-active control systems maintain the reliability of the passive control systems while taking advantage of the adjustability of the active control system. In this research, a semi-active orificed fluid damper having the capacity of about 2 tons was designed and fabricated. It is a two-stage damper with normally open solenoid valve. A series of tests was performed to grasp its performance characteristics. It was also applied to a 6-story steel structure subjected to random and seismic excitations for the confirmation of its validity on structural vibration absorption.

Durability Performance Evaluation of PolyUrea for Seismic Retrofitting of RC Structures (구조물 내진 보강용 폴리우레아의 내구 성능 평가)

  • Cho, Chul-Min;Kim, Jang Jay Ho;Lee, Doo-Sung;Kim, Tae-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • An experimental study is needed a reinforcing method for seismic load to apply for RC structures because a lot of earthquakes have frequently happened in the world and those also collapsed infrastructures or damaged human lives. The reinforcing effect of PolyUrea (PU) appeared to be excellent under blast and impact about RC structures. In this study, Stiff Type PolyUrea (STPU) had developed by manipulating the ratio of the components of prepolymer and hardener of PU. And the durability performance evaluation of STPU for deterioration and chemical resistance has been performed. Acid environmental exposure test and ultraviolet (UV) exposure test have been performed as the durability performance evaluation for STPU. Concrete carbonation exposure test and freezing and thawing test for concrete coated with STPU have been performed. The experimental result showed that STPU has high resisting capacity and durability in all tests. Therefore, STPU would be used as seismic reinforcement materials.

A Comparative Study on Skid Resistance Performance Evaluation Methods for Maintenance of Skid Resistance Pavement (미끄럼방지포장 유지관리를 위한 미끄럼저항 성능평가방법 비교 연구)

  • Hyun-Woo Cho;Sang-Kyun Noh;Bong-Chun Lee;Yoon-Seok Chung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.79-85
    • /
    • 2023
  • Skid resistance pavement is an accessory to the road and is a facility for the safe driving of cars by increasing the skid resistance of road pavement. In particular, in bad weather conditions such as snow, rain, and black ice, the skid resistance performance of skid resistance pavement greatly affects the safety of road traffic and drivers. However, BPT(British Pendulum Tester) has a test area of only 0.009 m2, making it difficult to represent the overall packaging surface. A reliable method of evaluating slip resistance performance is needed for maintaining non-slip packaging. In this study, the conventional BPT test and the skid resistance performance evaluation method of the PFT(Pavement Friction Tester) and µGT(Micro Grip Tester) tests were compared through guidelines and standard investigations and applied to the field skid resistance performance evaluation. In addition, skid resistance pavement with different skid resistance performance was installed at the test-bed and actual road demonstration sites to compare BPN(British Pendulum Number), SN(Skid Number), GN(Grip Number), and to derive correlations for each performance evaluation method. As a result of the experiment, SN and GN showed similar skid resistance performance, and the GN value was derived similar to BPN × 0.01.

Performance Evaluation of the Full-Scale Active Mass Dampers based on a Numerical Model and Test (실물크기 능동형 제어장치의 수치모델 및 실험에 기초한 성능 평가)

  • Jeon, Min-Jun;Lee, Sang-Hyun;Woo, Sung-Sik;Mun, Dae-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.635-643
    • /
    • 2015
  • In this study, the experimental test results are given to confirm the control efficiency of the linear control algorithm used for designing the active mass dampers(AMD) which are supposed to be installed at Incheon international airport control tower. The comparison between the results from test and numerical analysis is conducted and it was observed that the AMD showed the control performance expected by the numerical model. The effects of the gain scheduling and constant-velocity signal added to the control signal calculated by the algorithm is identified through the observation that the AMD always show behavior within the given stroke limit without any loss of the desired control performance. The phase difference between the accelerations of the structure and the AMD were almost close to 90 degree, which implies that the AMD absorbed the structural energy effectively.

Evaluation of Testing Method for Quality Control of Chloride Diffusivity in Concrete under chloride attack environment (콘크리트 구조물의 염해 내구성능 검토를 위한 현장 품질관리 시험법 검토)

  • Kim, Hong-Sam;Cheong, Hai-Moon;Ahn, Tae-Song;Kim, Cheol-Ho;Geon, Byung-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.973-976
    • /
    • 2008
  • Recently, it is increasingly reported that the deterioration of concrete structure under marine environments is due to diffusion and penetration of chloride ions. It is very important to estimate the diffusion coefficient of chloride ion in concrete. Estimation methods of chloride diffusivity by concentration difference is time-consuming. Therefore, chloride diffusivity of concrete is mainly conducted by electrically accelerated method, which is accelerating the movement of chloride ion by potential difference. However, there has not been any proper method for field quality control to closely determine the diffusion coefficient of chloride ion through accelerated tests using potential difference. In this paper, the various test methods for determination of chloride diffusion coefficient in concrete were investigated through comparison accelerated tests. From the results of estimated diffusion coefficient of chloride ion, relationship between the ponding test and acceleration test was examined.

  • PDF