• Title/Summary/Keyword: 구조보강

Search Result 2,829, Processing Time 0.027 seconds

Enhancing the Performance of High-Strength Concrete Members Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 구조 부재의 성능 향상)

  • Yang, Jun-Mo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.479-480
    • /
    • 2010
  • The efforts to achieve high-performance, durable reinforced concrete structures have increased the demands for improving the performance of both the concrete and the reinforcing materials. Researches for the hybrid reinforcing technique, which is maximizing the performance of high-strength concrete structures by applying the combination of high performance reinforcing materials, were performed in this study.

  • PDF

Strengthening Performance of RC Beams Exposed to Freezing and Thawing Cycles after Strengthening in Shear with CFRP Sheet (CFRP 쉬트로 전단보강후 동결융해에 노출된 철근콘크리트 보의 보강성능)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yun-Su;Lee, Min-Jung;Seo, Soo-Yeon;Choi, Ki-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.161-164
    • /
    • 2008
  • In recent years, carbon fiber-reinforced polymer (CFRP) has been widely used for repairing and/or strengthening structural elements in concrete. Not enough test data, however, are available to predict the long-term performance of the repaired and improved structures exposed to weathering. The objective of this research is to study the effect of freeze-thaw cycling on the behavior of reinforced concrete (RC) beams strengthened in shear with carbon fiber sheet. Six small-scale RC beams (100mm${\times]$100mm${\times]$400mm) were strengthened with CFRP in shear, subjected to up to 400 cycles freeze-thawing from -17${\sim}4^{\circ}C$, and tested to failure in four-point bending. Test result, there was no significant damage to carbon fiber sheet strengthened concrete beams had been suffered 30 cycles of freeze-thawing, and more over 60 cycles of freezing-thawing brought about a reduction in resistance of only 25% of the initial level.

  • PDF

Analytical Study for Optimal Reinforcement Amount and Development of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재 개발 및 최적 보강량 산정을 위한 해석적 연구)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.136-145
    • /
    • 2013
  • Social interest in the seismic retrofit of the structure is growing massive earthquake that occurred recently. The brittle fracture of Non-seismically designed Columns lead to full collapse of the building. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly in recent years, fiber-reinforced method utilizing the advantages of the composite material are preferred. However, the reinforcement methods such as this, there is a drawback to induce physical damage to structures, and time consuming work space is large. IIn this study, FRP seismic reinforcement was developed using the Aluminum connector and the composite material (Glass Fiber Reinforced Polymer). Then, the optimum quantities of FRP seismic reinforcement was determined using a nonlinear finite element analysis program. Finally, the quantity decision process through the design and analysis of FRP reinforcement was suggested.

Prediction of Failure Modes for Reinforced Concrete Beams Strengthened with NSM CFRP Reinforcement (탄소섬유보강재로 표면매립 보강된 철근콘크리트보의 파괴모드 예측)

  • Jung, Woo Tai;Park, Jong Sup;Park, Young Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.349-356
    • /
    • 2008
  • Recently FRP (Fiber Reinforcement Polymer) is widely used for the strengthening of damaged RC beams. Although many tests were carried out to verify flexural capacity of RC beams strengthened with FRP sheet or plate, the behavior of strengthened RC beams has not yet clearly verified. To investigate the strengthening efficiency of the Near Surface Mounted Reinforcement (NSMR) technique experimentally and analytically, a total of 7 specimens have been tested. The experimental results revealed that specimens strengthened with NSMR improved the flexural capacity of RC beams. Also, while the NSMR specimens utilized CFRP reinforcement efficiently compared to the EBR (Externally Bonded Reinforcement) specimen, the NSMR specimens still have debonding failure between epoxy and concrete interface. This study has proposed the model to predict failure modes and failure loads. Good agreement was obtained between the predicted and the experimental results.

A New Grillage Method for Analyzing Orthogonally Stiffened Plated Structures (직교 이방성으로 보강된 평판 구조물 해석을 위한 새로운 방법 연구)

  • 조규남
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.101-112
    • /
    • 1989
  • Development of a procedure for improved modeling of orthogonally stiffened plated grillages is the primary subject of this paper. In the method developed here a modified static condensation procedure is used to get a complete 2-dimensional grillage which represents the stiffness of the original orthogonally stiffened plated structure. The theory and numerical model are applied to a typical structure and the method has been demonstrated to work well for the analysis of orthogonally stiffened plate structures.

  • PDF

An Experimental Study on the Strengthening Effect of RC Beams Strengthened by CFRP (탄소섬유 보강재로 보강한 RC 보의 보강효과에 관한 실험적 연구)

  • Kim, Jae-Hun;Park, Sung-Moo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.71-77
    • /
    • 2005
  • Bonded CFRP Plate method used murk in reinforcement method is very efficient for stress increment of reinforced members. But CFRP plate dosen't display enough its capacity and have the destruction characteristic of premature failure that reach failure by debond plate, because near-surface-bond using epoxy. Such destruction character of reinforced specimens take the influence at variables as steel reinforcement ratio, concrete strength, kind of reinforcement materials, reinforced length, property of epoxy used in binder and so on. In this study, performed experiment results are compared and considered on flexural performance of Near Surface Mounted Reinforcement used CFRP-Rod, as complement about structural behavior of RC beam reinforced flexural capacity in CFRP plate and premature failure of reinforcement material. Main variables of RC beam applied CFRP Plate external bond method are experimental variables as reinforcement length, reinforcement position (tension face and side face of beam) and existence of ironware in end parts. In case of CFRP-Rod, variable is reinforcement length.

  • PDF

Compressive Behavior of H-section Brace Strengthened by Non-welded Cold-Formed Element (무용접 냉간성형 조립재로 보강한 H형강 가새의 압축거동)

  • Kim, Sun Hee;Kim, Do Bum;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.169-180
    • /
    • 2015
  • Recently, Seismic performance of the building built in the past is required to review, because the code for seismic design have been reinforced. In 2009, if the revised latest criteria of seismic design is applied, the majority the steel structure of the low-rise concentrically braced system is short of the seismic performance. Also, when the steel braces are subject to compressive load, which causes unstable behavior of the structure. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement. Therefore, this study suggests restraining the bending buckling of slender H-shaped braces to resist compressive force. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement.

Bond Characteristic Between Lightweight Concrete and GFRP Bar (경량콘크리트와 GFRP 보강근의 부착 특성)

  • Son, Byung-Lak;Kim, Myung-Sik;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.112-121
    • /
    • 2013
  • FRP reinforced lightweight concrete structures can offer corrosion resistance and weight reduction effect simultaneously, so practical use of the structures may be expected afterwards. But to make concrete structures using lightweight concrete and FRP bar, that can resist external forces without internal slip of the FRP bar, it is very important to understand bond characteristic between lightweight concrete and FRP bar. During that time, a lot of studies for bond behaviors of FRP bar in normal concrete were conducted, but studies for bond behavior of FRP bar in lightweight concrete are very limited to date. So, bond characteristic between lightweight concrete and helically deformed GFRP bar was investigated in this study. Three main parameters were considered in experimental investigation: type of rebar, concrete type, and compressive strength of lightweight concrete. As an experimental result, it could be known that bond strength of helically deformed GFRP bar in lightweight concrete was 0.49 times bond strength of steel reinforcement in normal concrete.

Evaluation of Reinforcement Effect of Deteriorated PSC Beam through Cutting Its External Tendons (외부강선 파단실험을 통한 노후 PSC 교량의 보강효과 평가)

  • Park, Chang-Ho;Lee, Byeong-Ju;Lee, Won-Tae;Ku, Bon-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.178-186
    • /
    • 2005
  • In this study, the PSC girder bridge retrofitted with external tendons is tested to verify the strengthening effects. We measure the variations of the displacement and strain at mid-span of each beam as external tendons are removed in sequence. The structural behavior of the bridge are examined using controlled truck load tests for the systems before and after all external tendons were removed. From the test results, the characteristics of structural behavior of the bridge do not change significantly, but the natural frequency is decreased after the external tendons are removed. The strengthening effects of bridges can be exactly estimated by analytical methods some extent. As a result of this study, when a PSC girder bridge is deteriorated, the bridge can be retrofitted effectively by External Prestressing Strengthening Method, and the strengthening effects can be predicted through accurate structural analysis.

Flexural Capacity of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨성능)

  • Park, Hyun-Jung;Cho, Baik-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.177-187
    • /
    • 2004
  • This investigation attempts to analyze the flexural behavior of a strengthened beam with carbon fiber sheets in three stages according to the conditions of the constituents : elastic stage, pre-yielding stage, and post-yielding stage. The proposed analytical method for strengthened beams is compared with the experimental results such as yield load, ultimate load, and flexural rigidities. The contributions of the constituents to the strengthened beam capacity are examined from the flexural analysis. The validity of using KCI strength method to estimate ultimate moment of a strengthened beam is also investigated.