• Title/Summary/Keyword: 구조물 안전진단

Search Result 546, Processing Time 0.026 seconds

Application of Safety Diagnosis Using Drones (드론을 이용한 안전진단 활용 방안에 관한 연구)

  • Park, Sung-Jin;Lee, Young-Chang;Jang, Eun-Jeong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.186-187
    • /
    • 2016
  • 본 논문에서는 평소 사람이 접근하기 어려워 점검이 힘들었던 대형구조물에 대하여 드론을 활용한 안전점검의 활용 가능성을 기획하였으며, 지상에서 식별하기 힘들거나 육안만으로 찾기 힘든 구조물을 근접 촬영하고 열화상 카메라를 이용해 구조물의 상태를 정밀 점검하고자 한다. 국내 최초로 드론을 활용하여 정밀 안전진단에 활용 가능한지에 대한 검토와 일반 안전진단과의 차별성 및 비교를 통해 향후 드론에 미치는 영향을 검토하고자 한다.

  • PDF

AE 를 이용한 콘크리트 구조물 진단 및 감시 방법의 개발

  • 최기흥;최기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.15-20
    • /
    • 1998
  • 우리나라의 많은 콘크리트 구조물이 장기간의 과중한 사용과 열악한 환경의 영향으로 취약해진 것으로 나타나고 있어서 유지와 보수가 제대로 이루어지지 않을 경우 안전사고로 연결될 수도 있다. 따라서 경제적이고 효과적인 콘크리트 구조물 안전진단법의 개발과 감시 시스템의 구축이 절실히 필요하게 되었다. (중략)

  • PDF

구조안전진단 감상

  • Lee, Chang-Nam
    • Korean Architects
    • /
    • no.2 s.274
    • /
    • pp.56-58
    • /
    • 1992
  • 구조 안전진단 업무는 구조물의 설계, 시공과 아울러 재료와 구조역학 등 여러분야에 익숙하여야 수행할 수 있으며, 진단 결과 보강, 보완할 필요가 있을 때는 더구나 종합적인 지식과 경험을 갖추어야 할 것임을 강조하고 싶다. 거기에 덧붙여 각종 진단 장비를 마련하여 그 장비들의 적절한 사용방법과 측정결과의 분석 능력이 필수적이다. 그러나 수많은 첨단장비로 무분별하게 많은 검사를 한다고 해서 정확한 진단이 내려지는 것도 아니다. 이제 시중에서 흔히 자행되는 구조 안전진단 사례를 보면서 느낀 점을 중심으로 설명함으로써 70여명의 안전진단 기술자를 비롯한 독자들의 이해를 돕고자 한다.

  • PDF

Remaining Service Life Estimation Model for Reinforced Concrete Structures Considering Effects of Differential Settlements (부등침하의 영향이 반영된 철근콘크리트 구조물 잔존수명 평가모델)

  • Lee, Sang-Hoon;Han, Sun-Jin;Cho, Hae-Chang;Lee, Yoon Jung;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.133-141
    • /
    • 2020
  • Korea Infrastructure Safety and Technology Corporation (KISTEC) specifies that the safety inspection and precise safety diagnosis of concrete structures shall be conducted in accordance with the 'Special Law on Safety Management of Infrastructure'. The detailed safety inspection and precise safety diagnosis guidelines presented by KISTEC, however, gives only the grade of members and structures, and thus it is impossible to quantify remaining service life (RSL) of the structures and to quantitatively reflect the effect of differential settlements on the RSL. Therefore, this study aims to develop a RSL evaluation model considering the differential settlements. To this end, a simple equation was proposed based on the correlations between differential settlements and angular distortion, by which the angular distortion of structures was then reflected in nominal strengths of structural members. In addition, the effects of the differential settlements on the RSL of structures were analyzed in detail by using the safety diagnosis results of actual concrete structure.

Performance Evaluation of NDE Methods in Condition Assessment of Structural Elements (구조물 진단에 있어 비파괴 시험법의 성능평가)

  • Shim, Hyung Seop;Kang, Bo Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.167-175
    • /
    • 2007
  • The relations between data from test methods and conditions in structural elements are considered. NDE(Nondestructive Evaluation) methods are joint application of a test and a basis for interpretation of data obtained in the test. Correct assessments of conditions of elements depend on the inaccuracy and variability in the test data and on the uncertainty of correlations between attributes(what is measured) and conditions(what is sought in the inspection). A full description of the performance of NDE methods considers the relation of test data to condition of elements. The quality of the test data itself is important, but equally important is the interpretation that occurs after the test. To make the decision of the performance of NDE methods, this paper presents mathematical basis to measure the reliability of NDE methods.

Estimation of Compressive Strength of Reinforced Concrete Vertical and Horizontal Members Using Ultrasonic Pulse Velocity Method (초음파속도법을 이용한 철근콘크리트 수직 및 수평부재의 압축강도 추정)

  • Hong, Seonguk;Lee, Yongtaeg;Kim, Seunghun;Kim, Jonghyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.197-205
    • /
    • 2018
  • Recently, remodeling is increasing due to aging of buildings. Therefore, the importance of quality control of structures has been raised, and interest in safety diagnosis and evaluation of structures has been increasing. In order to accurately diagnose old buildings, a diagnostic evaluation technique is needed to evaluate the defects of structures in advance. In addition, as the safety diagnostic criteria for reconstruction are improved and the weight of structural safety is increased, researches on safety diagnosis techniques of structures that are faster and more reliable are needed. In this study, we tried to estimate the compressive strength by examining the correlation between ultrasonic pulse velocity and compressive strength of a 1 story structure consisting of vertical and horizontal members of reinforced concrete using ultrasonic pulse velocity method, which is one of the nondestructive testing methods. The purpose of this study is to examine the applicability in the field. As a result, the estimated average error rate of the compressive strength of the structure using the ultrasonic pulse velocity method was 28.7%, which confirmed the applicability in the field. However, in order to increase the accuracy of the estimation, the necessity of the reliable diagnostic method using the composite nondestructive testing method was confirmed.

A Study of Structural Safety Diagnosis using Frequency Domain Analysis of Impact-Echo Method (충격반향기법의 주파수영역 해석을 이용한 구조물 안전진단에 관한 연구)

  • 안제훈;서백수
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2004
  • Impact-echo is a method for non-destructive testing of concrete structure. This method is based on the use of impact-generated stress wave which is propagated and reflected from internal flaws within concrete structure and external surface. In this study, we performed non-destructive testing using impact-echo methods for safety diagnosis of civil engineering and building structures. There are testing cases for the three models having one-dimensional form ; The first case is the measurement of thickness change of the model, the second is the detection of cavity in the model, and the third is the predictions of the lining thickness and the position of the cavity under tunnel lining condition.