• Title/Summary/Keyword: 구조기반 검색

Search Result 1,173, Processing Time 0.019 seconds

Development of checklist questions to measure AI capabilities of elementary school students (초등학생의 AI 역량 측정을 위한 체크리스트 문항 개발)

  • Eun Chul Lee;YoungShin Pyun
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.7-12
    • /
    • 2024
  • The development of artificial intelligence technology changes the social structure and educational environment, and the importance of artificial intelligence capabilities continues to increase. This study was conducted with the purpose of developing a checklist of questions to measure AI capabilities of elementary school students. To achieve the purpose of the study, a Delphi survey was used to analyze literature and develop questions. For literature analysis, two domestic studies, five international studies, and the Ministry of Education's curriculum report were collected through a search. The collected data was analyzed to construct core competency measurement elements. The core competency measurement elements consisted of understanding artificial intelligence (6 elements), artificial intelligence thinking (4 elements), artificial intelligence ethics (4 elements), and artificial intelligence social-emotion (3 elements). Considering the knowledge, skills, and attitudes of the constructed measurement elements, 19 questions were developed. The developed questions were verified through the first Delphi survey, and 7 questions were revised according to the revision opinions. The validity of 19 questions was verified through the second Delphi survey. The checklist items developed in this study are measured by teacher evaluation based on performance and behavioral observations rather than a self-report questionnaire. This has the implication that the measurement results of competency are raised to a reliable level.

The Method for Real-time Complex Event Detection of Unstructured Big data (비정형 빅데이터의 실시간 복합 이벤트 탐지를 위한 기법)

  • Lee, Jun Heui;Baek, Sung Ha;Lee, Soon Jo;Bae, Hae Young
    • Spatial Information Research
    • /
    • v.20 no.5
    • /
    • pp.99-109
    • /
    • 2012
  • Recently, due to the growth of social media and spread of smart-phone, the amount of data has considerably increased by full use of SNS (Social Network Service). According to it, the Big Data concept is come up and many researchers are seeking solutions to make the best use of big data. To maximize the creative value of the big data held by many companies, it is required to combine them with existing data. The physical and theoretical storage structures of data sources are so different that a system which can integrate and manage them is needed. In order to process big data, MapReduce is developed as a system which has advantages over processing data fast by distributed processing. However, it is difficult to construct and store a system for all key words. Due to the process of storage and search, it is to some extent difficult to do real-time processing. And it makes extra expenses to process complex event without structure of processing different data. In order to solve this problem, the existing Complex Event Processing System is supposed to be used. When it comes to complex event processing system, it gets data from different sources and combines them with each other to make it possible to do complex event processing that is useful for real-time processing specially in stream data. Nevertheless, unstructured data based on text of SNS and internet articles is managed as text type and there is a need to compare strings every time the query processing should be done. And it results in poor performance. Therefore, we try to make it possible to manage unstructured data and do query process fast in complex event processing system. And we extend the data complex function for giving theoretical schema of string. It is completed by changing the string key word into integer type with filtering which uses keyword set. In addition, by using the Complex Event Processing System and processing stream data at real-time of in-memory, we try to reduce the time of reading the query processing after it is stored in the disk.

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.