• Title/Summary/Keyword: 구속

Search Result 2,419, Processing Time 0.031 seconds

Studies on the Characteristics of Modified Landscape and the Transformational Processes of Ongnyucheon in Changdeok Palace (창덕궁 옥류천의 수경(修景) 특성과 변천과정)

  • Jung, Woo-Jin;Kim, Hyung-Suk;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.42-56
    • /
    • 2012
  • This study was carried out to investigate the construction characteristics and the landscaping design skill for Wiyiam at Ongnyucheon(玉流川) in the rear garden of Changdeok Palace focusing on constructing technique, space composition and transformational process of the site. The results of this study were summarized as follows; First, Wiyiam of Ongnyucheon was constructed as garden ornament which was modified the huge bedrock into the shape of the mountain. The waterfall of Wiyiam was originally made of torrent which water flowed into the bottom, but it was reconstructed to take the effect of Inak(離落: the method to drop water from high place) by carving rock into square shape at the era of King Gojong(高宗). Second, main characteristics of Wiyiam appeared in Donggwoldo was the hill built up with a square pond and ground at the back of Wiyiam and the profound scenery of mountains and stream from the view of Wiyiam. Also, pavilions such as Soyojeong(逍遙亭), Cheongujeong and Taegeukjeong(太極亭) built in Ongnyucheon seemed to be constructed as the spots to appreciate the view and waterfall sound of Wiyiam. Also the spots were not bounded by the function of creating special water systems such as Cheongujeong pond and Taegeukjeong pond and showed the outstanding landscape design skill to make people feel unusual interest from each spot. On the other hand, this study considered that the evening scenery of Wiyiam, beautiful sound of falling water, unusual water system with beautiful plant materials were landscaped for the function of the psychological peace and stability to the appreciators. Lastly, the extreme change of space composition in Ongnyucheon was assumed as a strategy to improve the existing poor drain environment by confirming that the mountain stream and wall of Soyojeong were removed and drainage in both side of Soyojeong was installed in the 21th year of King Gojong's reign(1884).

Korean Style System Model of Financial ADR (한국형 금융ADR의 제도모델)

  • Seo, Hee-Sok
    • Journal of Legislation Research
    • /
    • no.44
    • /
    • pp.343-386
    • /
    • 2013
  • "Financial ADR" system in South Korea can be represented by so-called "Financial Dispute Resolution System", in which Financial Supervisory Service (FSS) and Financial Dispute Resolution Committee are the principal actors in operation of the system, and this is discussed as an "Administrative Financial ADR System". The system has over 10-year history since it was introduced in around 1999. Nonetheless, it was not until when financial consumer protection began to be highlighted after the 2008 financial crisis that Financial ADR system actually started to draw attention in Korea. This was because interest has been rising in "Alternative Dispute Resolution (ADR)" as an institutional measure to protect financial consumers damaged via financial transactions. However, the current discussion on the domestic Financial ADR system shows an aspect that it is confined to who is to be a principal actor for the operation of Financial ADR institution with main regards to reorganization of supervisory system. This article aims to embody these facts in an institutional model by recognizing them as a problem and analyzing the features of the Financial ADR system, thereby clarifying problems of the system and presenting the direction of improvement. The Korean Financial ADR system can be judged as "administrative model integrated model consensual model quasi-judicial model non-prepositive Internal Dispute Resolution (IDR) model". However, at the same time, it is confronted with a task to overcome the two problems; the system is not equipped with institutional basis for securing its validity in spite of the adopted quasi-judicial effect model; and a burden of operating an integrated ADR system is considerable. From this perspective, the article suggests improvement plans for security of validity in the current system and for expansion of industry-control ADR system, in particular, a system of prepositive IDR model. Amongst them, it suggests further plans for securing the validity of the system as follows; promotion to expand the number of internal persons and to differentiate mediation procedures and effect; a plan to keep a financial institution from filing a lawsuit before an agreement recommendation or a mediation proposal is advised; and a plan to grant suspension of extinctive prescription as well as that of procedures of the lawsuit.

Experimental Study on the Performance Improvement of Velcro Reinforcement through Internal Filling (내부충진을 통한 벨크로 보강재의 성능향상에 대한 실험적 연구)

  • Jeong, Yeong-Seok;Kwon, Minho;Kim, Jin-Sup;Nam, Gwang-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.347-355
    • /
    • 2021
  • During the earthquake, for multi-story structure, if the first floor is soft, the deformation will concentrate on that floor causing a serious damage to the column members which might leads to the collapse of the whole structure like Piloti structure during the Pohang earthquake in Korea. According to the 2016 National Disaster Management Research Institute's "Investigation of Seismic Reinforcement and Cost Analysis of Domestic Non-seismic Buildings", the rate of seismic resistance of private reinforced concrete buildings was 38.3 %. Among them, it was reported that the seismic-resistance ratio of the two to five-story structures was less than 50 %. Accordingly, the government is trying to improve the seismic rate through support projects, but the conventional seismic reinforcement methods are still expensive, and emergency construction is difficult. Therefore, in this study, the field applicability was evaluated by improving the reinforcement method using Velcro, which was developed through the research project of the Ministry of Land, Transport and Maritime Affairs in 2014. In order to improve the performance of the Velcro reinforcement method, introducing the initial tension of Velcro using high foaming rigid urethane filling between the Velcro and concrete of the columns was applied. Additionally, an experiment was conducted to evaluate the ductility of Velcro specimen from the concrete confinement effect. As a result, the ductility of the Velcro specimen was improved compare to Normal specimen. However, the energy dissipation capacity of VELCRO2 is better than VELCRO1, yet the maximum ductility of those two specimens did not show a significant difference. Therefore, the improvement of the internal filler material is still needed to have a better maximum ductility.

A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구)

  • Kim, Hyungmin;Lee, Byokkyu;Woo, Jaegyung;Hur, Ik;Lee, Junki;Lee, Sugon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.13-21
    • /
    • 2019
  • There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.

International Legal Status of U.S. Citizens Property Right to Space Resources (미국 국내법령상 우주자원 소유권의 국제법상 의의)

  • Shin, Hong-Kyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.419-442
    • /
    • 2018
  • Space Treaty Article 2 stipuates non-appropriation by sovereignty, and in any other means. Interpretative controversies has continued as regards the meaning of any other means. It is not clear whether appropriation by private entity is also prohibited or not. Furthermore, the controverse around the binding force of Article 1 has made worse the controversy regarding such appropriation. U.S. Congress has enacted the law regarding the space resouce mining in 2015. Its main purpose is to alleviate legal unstability which U.S, private companies have faced, and it provides some provisions regarding private rights about space resources. Original bill, H.R. 1508 included the property right. Amendment to the bill is to ensure that an "asteroid resource utilization activity" is inter-preted as on a single asteroid and not on any asteroid. The use of the word "in situ" in defining space resources simply means resources in place in outer space; but any such resource within or on an asteroid would need to be "obtained" in order to confer a property right. The use of the word "in situ" in merely defining a space resource in the bill is not equivalent to claiming sovereignty or control over celestial bodies or portions of space. Further, there is clear Congressional direction in the bill that the President is only to encourage space resources exploration and utilization, including lowering barriers to such activity, "consistent with" and "in accordance with" US international obligations. Federal courts are granted original jurisdiction over entities defined in ${\S}$ 51301(4) and in-situ asteroid resources that have been removed from an asteroid by such entities. Federal courts are not granted jurisdiction over outer space, the Moon, other celestial bodies, or the asteroid from which the in-situ natural resource was removed. It is said that the Space Resource Utilization Exploration Act of 2015, talked about the rights of private players to own-kind of a "finders keepers" law.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer (벤토나이트 완충재 설계 기준 온도에 따른 고효율 처분시스템 처분 간격 및 암반 조건 산정을 위한 수치해석적 연구)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Cho, Dongkeun
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.289-308
    • /
    • 2021
  • This study conducts coupled thermo-hydro-mechanical numerical modeling to investigate the maximum temperature and conditions for securing mechanical stability of the high-level radioactive waste repository when temperature criteria of bentonite buffer are 100℃ and 125℃, respectively. In case of temperature criterion of buffer as 100℃, the maximum temperatures at the interface between canister and buffer are calculated to be 99.4℃ and 99.8℃, respectively for a case with disposal tunnel spacing of 40 m and deposition hole spacing of 5.5 m and for the other case with disposal tunnel spacing of 30 m and deposition hole spacing of 6.5 m. In case of temperature criterion of buffer as 125℃, spacings of disposal tunnel and deposition hole could be decreased to 30 m and 4.5 m, respectively, which reduces the disposal area up to 55% compared to the disposal area of KRS+. According to analysis of mechanical stability for various disposal spacings, RMR of rock mass for KRS+ should be larger than 72.4 which belongs to good rock in RMR classification to prevent failure of rock mass. As disposal spacing is decreased, required RMR of rock mass is increased. In order to prevent failure of rock mass for a case with disposal tunnel spacing of 30 m and deposition hole spacing of 4.5 m, RMR larger than 87.3 is needed. However, mechanical stability of the repository is secured for all cases with RMR over 75 considering the enhancement of rock strength due to confining stress induced by swelling of the bentonite buffer and backfill.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.

A Study Seeking the Practical Implementation of the Yellow Sea Large Marine Ecosystem Project (황해광역해양생태계 프로젝트의 실효성 확보에 관한 연구)

  • Kim, Jin-kyung;Kown, Suk-jae;Lee, Sang-il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.987-994
    • /
    • 2021
  • The Yellow sea, as described in article 123 of UNCLOS, is semi-enclosed sea surrounded by the Republic of Korea, the People's Republic of China and North Korea. In addition, the Yellow Sea is one of the 66 large marine ecosystems as it contains large amounts of marine resources. According to article 194 of UNCLOS, states should be aware of rights and duties with respect to the protection and preservation of the marine environment to be engaged with countries directly as regional entity or indirectly. Therefore, the legal blank is urgent in terms of trans-boundary environmental pollutant issues. The UNDP has conducted a project called Yellow Sea Large Marine Ecosystem (YSLME) which has reached the 2nd phase. The project has some notable achievements, namely performing joint activities on analysis of diagnostic trans-boundary issues in collaboration with China and South Korea, developing a strategic action plan based on TDA, and establishing regional strategic action plan. However, on the other hand, the project could not reflect the full participation of North Korea as a state party. As a result, the project has a limitation on effective implementation of RSAP. Therefore, this study focuses on the suggestion of a legally-binding trilateral treaty as a blue print for the next, 3rd phase of the project. By analyzing the best practice of the Wadden Sea Trilateral Treaty case, the study verifies the validity of legislative measures on establishing and managing a legally-binding trilateral YSLME Commission. By suggesting a three phase treaty, incorporating a joint declaration by establishing the commission, the signing of the treaty, and formulating an umbrella convention and implementation arrangement, the study expects to guarantee the consistency and sustainability of the trilateral treaty regardless of political issues pertaining to North Korea.