• Title/Summary/Keyword: 구속조건 식

Search Result 131, Processing Time 0.028 seconds

An Experimental Study on the Required Performances of Roof Concrete Placed in the In-ground LNG Storage Tank (지하식 LNG 저장탱크의 지붕 콘크리트의 요구성능에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.339-345
    • /
    • 2013
  • This study is to derive from the required performances and the optimum mix proportion of the roof concrete placed in the in-ground LNG storage tank with a capacity of 200000 $m^3$, and propose the actual data for site concrete work. The concrete placing work without sliding and segregation in the fresh concrete condition is very important because the slope of domed roof is varied in the large range by its curvature. Also the control of hydration heat and the strength development at test ages are classified with massive section about 1.4 m thick and considered to the pre-stressing work and removal of air support after concrete placing work. Considering above condition, slump range is selected $100{\pm}25$ mm under the slope $20^{\circ}$ and $150{\pm}25$ mm over the slope $20^{\circ}$ s until 60 minutes of elapsed time. Also, the roof concrete is satisfied with compressive strength range including design strength at 91 days (30 MPa), pre-stressing work at 7 days (10 MPa), air support removal work at 21 days (14 MPa). Replacement ratio of limestone powder is determined by confined water ratio test and main design factors include water-cement ratio (W/C), sand-aggregate ratio and dosage of admixture. As test results, the optimum mix proportion of the roof concrete used low heat cement is as followings. 1) Replacement ratio of limestone powder 25% by confined water ratio test 2) Water-cement ratio 57.8% 3) Sand-aggregate ratio 42.0%. Also, test results for the adiabatic temperature rising test is satisfied with its criteria and shown the lower value compared to preceding storage tank (TK-13, 14). These required performances and the optimum mix proportion is to apply the actual construction work.

Stiffness-based Optimal Design of Shear Wall-Frame Structure System using Sensitivity Analysis (민감도 해석을 이용한 전단벽-골조 구조시스템의 강성최적설계)

  • Lee Han-Joo;Kim Ho-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.63-71
    • /
    • 2006
  • This study presents the effective stiffness-based optimal technique to control Quantitatively lateral drift for shear wall-frame structure system using sensitivity analysis. To this end, the element stiffness matrices are constituted to solve the compatibility problem of displacement degree of freedom between the frame and shear wall. Also, lateral drift constraint to introduce the approximation concept that can preserve the generality of the mathematical programming and can effectively solve the large scaled problems is established. And, the section property relationships for shear wall and frame members are considered in order to reduce the number of design variables and differentiate easily the stiffness matrices. Specifically, constant-shape assumption which is uniformly varying in size during optimal process is applied in frame structure. The thickness or length of shear wall can be changed depending on user's intent. Two types of 20 story shear wall-frame structure system are presented to illustrate the features of the stiffness-based optimal design technique.

Seismic Fragility Analysis of a Cable-stayed Bridge with Energy Dissipation Devices (에너지 소산장치를 장착한 사장교의 지진 취약도 해석)

  • Park, Won-Suk;Kim, Dong-Seok;Choi, Hyun-Sok;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.1-11
    • /
    • 2006
  • This paper presents a seismic fragility analysis method for a cable-stayed bridge with energy dissipation devices. Model uncertainties represented by random variables include input ground motions, characteristics of energy dissipation devices and the stiffness of cable-stayed bridge. Using linear regression, we established demand models for the fragility analysis from the relationship between maximum responses and the intensity of input ground motions. For capacity models, we considered the moment and shear force of the main tower, longitudinal displacement of the girder, deviation of the stay cables tension and the local buckling of the main steel tower as the limit states for cable-stayed bridge. As a numerical example, fragility analysis results for the 2nd Jindo bridge are presented. The effect of energy dissipation devices is also briefly discussed.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

Review of Structural Design Provisions of Rectangular Concrete Filled Tubular Columns (각형 콘크리트충전 강관기둥 부재의 구조설계기준 비교연구)

  • Lee, Cheol Ho;Kang, Ki Yong;Kim, Sung Yong;Koo, Cheol Hoe
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.389-398
    • /
    • 2013
  • The structural provisions of rectangular CFT (concrete-filled tubular) columns in the 2005/2010 AISC Specification, ACI 318-08, and EC4 were comparatively analyzed as a preliminary study for establishing the unified standards for composite structures. The provisions analyzed included those related to the nominal strength, the effect of confinement, plate slenderness, effective flexural stiffness, and the material strength limitations. Small or large difference can be found among the provisions of AISC, ACI, and EC4. Generally, the 2010 AISC Specification provides the revised provisions which reflect up-to-date test results and tries to minimize the conflict with the ACI provisions. For example, the 2010 AISC Specification introduced a more finely divided plate slenderness limits for CFT columns. In seismic applications, the plate slenderness limits required for highly and moderately ductile CFT columns were separately defined. However, the upper cap limitations on material strengths in both the AISC and EC4 provisions are too restrictive and need to be relaxed considering the high-strength material test database currently available. This study found that no provisions reviewed in this paper provide a generally satisfactory method for predicting the P-M interaction strength of CFT columns under various material combinations. It is also emphasized that a practical constitutive model, which can reasonably reflect the stress-strain characteristics of confined concrete of rectangular CFT columns, is urgently needed for a reliable prediction of the P-M interaction strength.

Numerical study on tunnel design for securing stability at connection between submerged floating tunnel and bored tunnel (수중터널 지반 접속부 안정성 확보를 위한 터널 설계에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel that allows tunnel segments to float underwater by buoyancy, and is being actively studied in recent years. When the submerged floating tunnel is connected to the ground, the tunnel and the bored tunnel inside the ground must be connected. There is risk that the stress will be concentrated at the connection between the two tunnels due to the different constraints and behavior of the two tunnels. Therefore, special design and construction methods should be applied to ensure the stability around the connection. However, previous studies on the stability at the connection site have not been sufficiently carried out, so study on the basic stage of the stability at connection site are necessary. In this study, numerical analysis simulating the connection between submerged floating tunnel and the bored tunnel confirmed that the shear strain concentration occurred in the ground around the connection, and it was analyzed that the structural factors can be handled during construction to have effects on the stability of the ground around the connection. Numerical results show that the risks from disproportionate displacements in the two tunnels can be mitigated through the construction of grouting material and joint design. Although the results from this study are qualitative results, it is expected that it will contribute to the determination of structural factors and risk areas that should be considered in the design of connections between the submerged floating tunnel and bored tunnel in the future studies.

On the Solution Method for the Non-uniqueness Problem in Using the Time-domain Acoustic Boundary Element Method (시간 영역 음향 경계요소법에서의 비유일성 문제 해결을 위한 방법에 관하여)

  • Jang, Hae-Won;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • The time-domain solution from the Kirchhoff integral equation for an exterior problem is not unique at certain eigen-frequencies associated with the fictitious internal modes as happening in frequency-domain analysis. One of the solution methods is the CHIEF (Combined Helmholtz Integral Equation Formulation) approach, which is based on employing additional zero-pressure constraints at some interior points inside the body. Although this method has been widely used in frequency-domain boundary element method due to its simplicity, it was not used in time-domain analysis. In this work, the CHIEF approach is formulated appropriately for time-domain acoustic boundary element method by constraining the unknown surface pressure distribution at the current time, which was obtained by setting the pressure at the interior point to be zero considering the shortest retarded time between boundary nodes and interior point. Sound radiation of a pulsating sphere was used as a test example. By applying the CHIEF method, the low-order fictitious modes could be damped down satisfactorily, thus solving the non-uniqueness problem. However, it was observed that the instability due to high-order fictitious modes, which were beyond the effective frequency, was increased.

Model Tests on the Lateral Behavior of Steel Pipe Piles(I) in the Nak -dong River Sand (강관말뚝의 수평거동에 대한 모형실험 연구(I) -대구지역 낙동강 모래에 대하여)

  • 김영수;허노영
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.59-74
    • /
    • 1997
  • This paper shows the results of a series of model bests on the behavior of single steel pipe pile which is subjected to lateral load in Nak-dong river sand. The purpose of the present paper is to estimate the effect of Non -homogeneous soil, constraint condition of pile head, lateral load velocity, relative density of soil, embedded pile length, and flexural stiffness of pile on the behavior of single pile which is embedded in Nak-dong river strand. These effects can be quantined only by the results of model tests. The nonlinear responses of lateral loadieflection relationships are fitted to 2nd polynomial equations by model tests results. Also, the lateral load of a deflection, yield and ultimate lateral load max. bending moment, and yield bending moment can be expressed as exponential function in terms of relative density and deflection ratio. By comparing Brom's results with model results on the lateral ultimate load, it is found that short and long pile show the contrary results with each other. The contrary results are due to the smaller assumed soil reaction than the soil reaction of the Nakiong river sand at deep point. By comparing lateral behavior on the homogeneous soil with non-homogeneous soil, it is shown that lateral loadieflection relationship is very dependent on the upper relative density. This phenomenon is shown remarkably as the difference between upper and lower relative density increases.

  • PDF

An Improved Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.175-185
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons, Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

Analysis of Coefficient of Dynamic Horizontal Subgrade Reaction and Correlation Factor (α) Considering Shear Wave Velocity of Soil (지반의 전단파 속도를 고려한 동적 수평지반반력계수와 보정계수(α) 분석)

  • Kim, Gun-Woo;Lim, Hyun-Sung;Song, Su-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.7-20
    • /
    • 2020
  • In this study, the dynamic behavior of a single pile foundation was investigated by using an analytical and numerical studies. The emphasis was given on quantifying a function about the coefficient of dynamic horizontal subgrade reaction from 3D analysis. Based on the numerical analysis, a modified correction factor (α), which is used to obtain the coefficient dynamic horizontal subgrade reaction, was proposed by considering shear wave velocity of soil and confining stress. It was found that the prediction by pseudo-static analysis using the proposed coefficient is in good agreement with the general trends observed by dynamic analysis, and it represents a practical improvement in the prediction of behavior for pile foundations subjected to dynamic loads.