• Title/Summary/Keyword: 구속모멘트

Search Result 85, Processing Time 0.027 seconds

A Study on the Flexural Behavior of Plate Girder Bridge Decks Using a Macro-Element (매크로 요소를 사용한 판형교 바닥판의 휨거동 해석)

  • 최진유;양기재;박남회;강영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • Current specification prescribes that upper and lower reinforcement mat is required in the same amount to resist negative and positive moment in bridge decks. But the negative moment is much smaller than positive moment because the actual behavior of decks consists of local deflection of slab and global deflection of girder. From this study, the analysis method based on harmonic analysis and slope-deflection method was developed and verified by finite element method. The negative moment, obtained from this method, were smaller than those computed based on the KHBDC specifications as much as 40∼50% in the middle of bridge. The amount of reduction of the design negative moment was shown herein to be dependent on variable parameters as shape factor(S/L) of slab, relative stiffness ratio of girder and deck slab, and so on. This investigations indicate that the upper reinforcement mat to resist negative moment can be removed. But further experimental study is required to consider durability and serviceability. From this new design concept, the construction expense can be reduced and the problem of decreasing durability resulting from corrosion of upper reinforcement steel settled.

  • PDF

Spacecraft Moment of Inertial Estimation by Modified Rodrigues Parameters (Modified Rodrigues Parameter 기반의 인공위성 관성모멘트 추정 연구)

  • Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • This study addresses spacecraft moment of inertial estimation approach using Modified Rodrigues Parameters(MRP). The MRP offer advantage by avoiding singularity in Kalman Filter design for attitude determination caused by the norm constraint of quaternion parameters. Meanwhile, MRP may suffer singularity for large angular displacement, so that we designed appropriate reference attitude motion for accurate estimation. The proposed approach is expected to provide stable error covariance update with accurate spacecraft mass property estimation results.

PM Interaction Diagram of RC Columns considering Confinement Effect of Transverse Steels (횡방향철근 구속효과를 고려한 철근콘크리트 기둥의 축력-모멘트 상관도)

  • Son, Hyeok-Soo;Yang, Byung-Hong;Yoon, Cheol-Kyun;Lee, Jae-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.324-330
    • /
    • 2005
  • The flexural strength and ductility capacity of reinforced concrete columns are largely dependent on the amount of transverse steel. However, current design code does not specify the confinement effect of transverse steels in strength calculation. A non-linear moment-curvature analysis of RC column sections was conducted in order to develop PM interaction diagram considering transverse reinforcement effects. In this paper, a more reasonable application method of PM interaction diagram considering transverse steel amounts is introduced and proposed, based on moment-curvature non-linear analysis. Also, we proposed simplified method to use. easily in practical design.

  • PDF

Determination of the Strength and Stiffness Degradation Factor for Circular R/C Bridge Piers (원형 철근콘크리트 교각의 강성 및 강도감소지수 결정)

  • 이대형;정영수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.73-82
    • /
    • 2000
  • 본연구의 목적은 반복하중을 받는 철근콘크리트 교량 교각의 비선형 이력거동을 해석적으로 예측하는 것이다 이를 위해서 반복적인 횡하중이 작용하는 경우에 실험결과와 일치하는 교각의 하중-변위 이력곡선을 도출하고자 수정된 trilinar 이력거동모델을 이용하였다 철근과 콘크리트의 비선형 거동특성과 각 하중단계에 따른 교각의 중립축을 구하여 소성힌지부의 모멘트와 변형률을 구하고 반복하중하에서의 강성의 변화를 해석적으로 모형화하기 위하여 각기 다른 강성을 갖는 5가지 지선을 갖춘 형태의 이력거동모델식을 제안하였다 본 연구에서는 실험적으로 구한 하중-변위 이력곡선을 이용하여 축하중비 주철근비 및 구속철근비에 따른 강도감소지수와 강성감소지수의 영향을 회귀분석을 이용하여 일반식으로 제안하였다 새로운 이력거동 해석 모델을 프로그램 SARCF III에 적용함으로써 기존 철근콘크리트 교각에 강도 및 강성감소 현상을 정확하게 예측하였다

  • PDF

Model Tests on the Lateral Behavior of Steel Pipe Piles(I) in the Nak -dong River Sand (강관말뚝의 수평거동에 대한 모형실험 연구(I) -대구지역 낙동강 모래에 대하여)

  • 김영수;허노영
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.59-74
    • /
    • 1997
  • This paper shows the results of a series of model bests on the behavior of single steel pipe pile which is subjected to lateral load in Nak-dong river sand. The purpose of the present paper is to estimate the effect of Non -homogeneous soil, constraint condition of pile head, lateral load velocity, relative density of soil, embedded pile length, and flexural stiffness of pile on the behavior of single pile which is embedded in Nak-dong river strand. These effects can be quantined only by the results of model tests. The nonlinear responses of lateral loadieflection relationships are fitted to 2nd polynomial equations by model tests results. Also, the lateral load of a deflection, yield and ultimate lateral load max. bending moment, and yield bending moment can be expressed as exponential function in terms of relative density and deflection ratio. By comparing Brom's results with model results on the lateral ultimate load, it is found that short and long pile show the contrary results with each other. The contrary results are due to the smaller assumed soil reaction than the soil reaction of the Nakiong river sand at deep point. By comparing lateral behavior on the homogeneous soil with non-homogeneous soil, it is shown that lateral loadieflection relationship is very dependent on the upper relative density. This phenomenon is shown remarkably as the difference between upper and lower relative density increases.

  • PDF

Compressive Strength of Horizontal Joints in Precast Concrete Large Panel System (대형 콘크리트 패널구조 수평접합부의 지지력 성능에 관한 연구)

  • 서수연;정봉오;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.138-147
    • /
    • 1994
  • The compressive strength of horizontal joints in precast concrete large panel structures depends on parameters such as grout and panel strength, detail of joint, joint moment, width of grout column, and etc. 44 specimens were tested to investigate the effects of parameters that influence the compressive strength of horizontal joints. The design formula specified in Korean Cock for compression horizontal joints must be reviewed, because it was based on the test results of the joint types not used in Korea. In this study comparing the test results, there fore, the validity of the design formulas was evaluated and a suitable formula was proposed to predict the ultimate strengths of compression horizontal joints. The increase of ultimate strengths was not observed, even if confined the horizontal displacement of slabs and reinforced the wall edge, when the grout strength is lower than panel strength. From the comparison of test results and those by the proposed formula, it was shown that proposed formula was suitable to predict the ultimate compressive strength of horizontal joints.

Analysis of Dynamic Behavior of a Single Pile in Dry Sand by 1g Shaking Table Tests (1g 진동대 실험을 통한 건조사질토에 근입된 단독말뚝의 동적 거동 분석)

  • Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.17-28
    • /
    • 2017
  • This paper presents the investigation of dynamic behavior of a single pile in dry sand based on 1g shaking table tests. The natural frequency of soil-pile system was measured, and then a range of loading frequency was determined based on the natural frequency. Additionally, the studies were performed by controlling loading accelerations, pile head mass and connectivity conditions between pile and cap. Based on the results obtained, relatively larger pile head displacement and bending moment occur when the loading frequency is larger than the natural frequency of soil-pile system. However, the slope of the p-y curve is smaller in the similar loading frequency. Also, it was found that inertia force like input acceleration and pile head mass, and relation of the natural frequency of soil-pile system and input frequency have a great influence on the slope of dynamic p-y curve, while pile head conditions don't.

Parametric Study on Seismic Performance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 교각의 내진성능에 대한 매개변수 연구)

  • Yeom, Eung-Jun;Kim, Hyun-Jong;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • The internally confined hollow-concrete filled tube (ICH-CFT) column has two tubes on the both sides (hollow part and outer part) of the concrete. The inner tube and the outer tube perform great seismic abilities, ductility and absorption of energy due to the steel tubes and the hollow part. So, the study of this column type for the practical use is needed. In this study, the qualitative analysis about seismic capacities depending on parameters is performed for the practical design of the ICH-CFT column. The parameters are diameter of column, hollow ratio and thickness of tubes with the same resistance of the moment. Also, the economical evaluation of ductility and comparison with CFT column make this study to be of practical use. Especially, a change of seismic performance depends on the hollow ratio and the thickness of the outer tube, and the economical hollow ratios according to the thickness of the outer tube in the ICH-CFT column are suggested.

Structural Performance of Concrete-encased Steel Columns using 800MPa Steel and 100MPa Concrete (800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능)

  • Kim, Chang-Soo;Park, Hong-Gun;Choi, In-Rak;Chung, Kyung-Soo;Kim, Jin-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.497-509
    • /
    • 2010
  • Five concrete-encased steel columns using high-strength steel($f_{ys}$=801MPa) and high-strength concrete($f_{ck}$=97.7MPa) were tested to investigate the eccentric axial load-displacement relationship. Test parameters included the type, yield strength, and spacing of lateral reinforcement, and also the eccentricity of axial load. To analyze the behavior of the column specimens, the nonlinear sectional analysis using strain-compatibility and confinement effect was performed. To examine the applicability of existing design codes for the composite sections using high-strength materials, the test results were also compared with the predictions by the nonlinear analysis and the design codes. The confinement effect of lateral reinforcement increased the ductility of concrete, and the moment capacity of the column specimens increased with the ductility of concrete. The prediction by the nonlinear analysis gave good agreement with the test results. On the other hand, the ACI 318 neglecting lateral confinement effect underestimated the strength of the column specimens, and the Eurocode 4 using complete plastic capacity of steel section overestimated.

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.