교육과학기술부는 2007년부터 디지털 교과서 개발 사업을 추진하고 있다. 그러나 이에 대한 평가 준거가 마련되지 않아 우수한 디지털 교과서를 개발하고 선정하는데 어려움을 겪고 있다. 이에 본 연구에서는 디지털 교과서에 대한 평가 준거를 개발하기 위해 디지털 교과서와 유사한 개념을 분석하고, 디지털 교과서의 속성과 기능을 살펴보았다. 또한 평가 준거는 문헌 조사 결과를 토대로 초안을 작성하고, 작성된 초안을 델파이 조사와 전문가 협의회, 현장 적합성 평가 등을 통해 타당성을 높였다. 그 결과, 평가 영역을 교과 내용, 교수 설계, 플랫폼, 사용자 등 4가지로 구분하고, 각 영역별로 평가 요소를 선정하여 총 74개의 평가 문항을 개발하였다. 교과 내용 영역에서는 적법성, 타당성, 정확성으로 구분하였고, 교수 설계 영역에는 가독성, 심미성, 통섭성으로 구분하였다. 플랫폼 영역은 호환성, 내구성, 접근성으로 구분하였고, 사용자 영역은 효과성, 만족성, 용이성으로 구분하였다.
강수는 지역에 따라 발생양상이 매우 다른 자연현상 중 하나이다. 이러한 강수를 효과적으로 분석하여 확률강수량을 산정하기위해서 수문학에서는 다양한 방법이 시도되어 왔다. 우리나라에서는 지점빈도해석을 통한 확률강수량을 주로 사용해왔으나 최근 들어 Hosking and Wallis(1997)가 제안한 지역빈도해석을 활용을 적극 도모 하고 있는 중이다. 이러한 지역빈도해석 기법은 지점빈도해석 기법에 비하여 한정된 강수자료를 활용하는 측면 등 여러 가지 장점을 가진 확률 강수량 산정방법이다. 그러나 이 기법을 적용하여 확률강수량을 산정하기 위해서는 강수의 지역구분을 먼저 수행하여야 한다. 강수지역의 구분을 위해서는 여러 가지 기법이 존재하나 최근에는 Cluster 기법 중 K-means 방법이나 Fuzzy c-means 방법 등을 주로 적용하여 지역구분을 수행하고 있다. 그러나 K-means 방법이나 Fuzzy c-means 방법 등은 산정 방법내에서 최적 군집수를 결정할 수 있는 알고리즘이 없기 때문에 임의적으로 최적 군집수를 결정하여야 한다. 본 연구에서는 이러한 단점을 극복하기 위하여 Cluster 평가지수 중 하나인 Dunn 지수를 이용하여 최적 군집수를 제시하고자 한다. 본 연구에서 강수지역을 구분하기 위하여 적용한 인자는 월 평균 강수량, 연 평균 강수량, 월 최대 강수량, 경도, 위도, 고도 등이며, 이를 K-means, PAM 및 친근도 전파 기법을 통하여 강수지역을 구분하였다. 적정 군집수를 임의적으로 증가시켜 가면서 Dunn 지수를 산정하였다. 산정된 결과를 통하여 최적 군집수를 결정하였다.
구분구적법에 대한 이해는 리만합의 극한으로 정의되는 정적분에 대한 이해의 기초가 된다. 그러나 선행연구는 구분구적법과 리만합의 극한으로서 정적분 개념에 대한 학생들의 이해에 여러 가지 한계가 있음을 지적하였다. 이 연구에서는 선행연구 분석을 통해 구분구적법의 개념 지도에 있어 크게 두 가지 어려움이 있음을 확인하였으며, 이를 개선하는데 기여할 만한 교수학적 시사점을 각각 기술하였다. 나아가 미국, 영국, 일본 교과서에 비추어 우리나라 교과서에서만 고유하게 다루어지는 정적분과 무한급수의 관계가 리만합의 극한이라는 정적분의 개념 지도에 있어 필수적인 내용 요소인지를 반성적으로 검토하였다.
인구통계와 같이 임의의 공간 단위로 집계되는 통계자료를 위성영상이나, 여타 다른 GIS 도형정보와 통합하여 활용하기 위해서는 상호간의 공간 단위를 일치시켜야 한다. 밀도구분도 매핑 기법은 집성된 통계자료를 분해하여 세밀한 공간 단위로 나누거나, 행정구역과 같은 객체 단위의 데이터를 연속된 표면 모델로 만드는데 적용 가능한 기법으로 제안되고 있다. 본 연구에서는 밀도구분도 매핑의 유효성을 평가하기 위해 1) 연구대상지역의 사업체 정보를 행정동 단위의 통계로 집계하고, 2) 행정동 통계에 밀도구분도 매핑 기법을 적용하여 사업체의 분포를 구하고, 3) 공간 내삽에 의해 구해진 사업체의 분포와 원 정보로부터 구해진 분포를 비교하여 알고리즘의 성능을 평가하였다.
마틴뢰프의 직관주의적 유형론의 중요 사항들을 설명하고, 그 체계의 가장 중요한 특성 중의 하나인 명제와 판단의 구분에 관해 검토한다. 1절에서 문제를 도입한 후, 2절에서 직관주의적 유형론의 명제개념은 직관주의적 명제개념의 발전된 형태임을 보이고, 3절에서는 직관주의적 유형론에서 가장 기본적인 판단개념을 설명한 후, 4절에서 직관주의적 유형론의 기본적인 추론규칙들을 설명하고 그 적용의 한 사례를 검토할 것이다. 마지막으로 5절에서, 직관주의적 유형론에서 명제와 판단의 구분이 차지하는 중요성을 부연한 후, 기초론적 체계에서 명제와 판단의 구분이 필수적인지의 문제와 관련하여, 통상적인 프레게적 구분으로부터 시작하여 직관주의적 유형론에서와 같은 구분에 이르기 위해서는 어떤 것들이 전제되거나 정당화되어야 하는지 검토할 것이다.
본 논문은 계통운영상황에 따른 대응책을 통하여 계통운영상태(state)를 구분하는 방법론을 제안한다. 일반적으로, 계통운영상태는 정상상태와 비상상태로 구분되지만, 본 연구에서는 이를 정상상태, 주의상태, 경보상태, 비상상태, 회복상태 등의 5가지로 구분하여 정의하고자 한다. 그리고 계통운영상태를 실정단계와 적용단계로 구분하여, 실정단계에서는 각 계통운영상태에 대한 대응책의 비용을 반영하여 계통운영상태를 설정하며 적용단계에서는 계통운영한계 및 각 대응책의 시행시간과 계통운영한계 초과시간 등을 고려하여 계통운영상태를 적용한다. 특히, 본 연구에서는 계통운영상태를 고려한 계통운영절차를 flowchart로 제시한다. 이러한 계통운영 상태는 계통운영자에게 계통운영에 대한 객관적 판단의 근거를 제시해 줄 것이다.
지점빈도해석은 해당 지점에서 기록된 수문자료를 바탕으로 확률론적 방법을 이용하여 해당 지역의 수문학적 현상을 해석하는 방법이다. 최근 이상 기후현상을 통해 극치 사상이 발생하고 있다. 이러한 극치 사상은 지점빈도해석을 이용하여 확률수문량을 추정하는데 많은 영향을 미친다. 특히 해당 지점의 표본 크기가 작을수록 이러한 영향은 좀 더 크게 반영 될 수 있다. 반면 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있는 실정이다. 지역구분은 지역빈도해석이 지점빈도해석과 구분 될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 본 연구에서는 한강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도 해석을 수행하였다.
이상기후현상으로 인해 극치 수문 사상들이 빈번히 발생함에 따라 상대적으로 높은 재현기간에 해당하는 극치 수문 사상해석에 대한 관심이 높아지고 있다. 그러나 우리나라의 경우 이러한 극치 수문 사상을 추정하기 위한 표본의 수가 부족한 실정이다. 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다는 장점을 가지고 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있다. 지역구분은 지역빈도해석이 지점빈도해석과 구분될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 인공신경망은 인간의 뇌가 학습하는 방식을 모사한 통계적 모델링 기법이다. 즉, 인간의 뇌가 일정한 반복 학습을 통해 어떠한 문제의 해법을 추론하거나 예측, 또는 패턴을 인식하는 일련의 과정을 알고리즘화 하여 목적함수의 해를 찾는 방식이다. 특히, 주어진 자료들로 부터 특징을 추출하고 그 특징을 학습하여 전체 자료의 분류나 군집화를 이루는데 널리 이용되고 있다. 본 연구에서는 낙동강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도해석을 수행하였다.
기두부와 단 분리 시 조각은 서로 다른 미세 운동을 하므로 스펙트로그램 상에서 미세 도플러 주파수의 형태가 서로 다르게 나타나며 이를 통해 구분이 가능하다. 본 논문에서는 합성곱 신경망(CNN : Convolutional Neural Networks)을 이용하여 기두부와 단 분리 시 조각을 구분하였다. 합성곱 신경망의 입력영상으로는 미세도플러 스펙트로그램을 사용하였다. 또한 기두부와 단 분리 시 조각의 구분성능을 향상시키기 위해 미세 도플러 스펙트로그램에 CA-CFAR(Cell Averaging-Constant False Alarm Rate)를 적용하여 전처리 과정을 수행하였다. 실험 결과, 전처리 과정을 수행하여 획득한 미세 도플러 스펙트로그램을 입력 영상으로 사용하였을 경우, 전처리 과정을 수행하지 않은 미세 도플러 스펙트로그램보다 모든 SNR환경에서 구분 성능이 향상되었다.
지금까지 필기 변이를 완화하기 위한 다양한 비선형 정규화 방법들이 제안되었으며 실제 인식 시스템에서 상당한 인식률 개선 효과를 나타내었다. 그러나, 필기 한글 인식에 있어서는 필기 변이 외에도 문자간의 높은 유사도로 인해 높은 인식률을 얻는데 어려움을 겪고 있다. 한글과 같이 문자간 유사도가 높은 언어를 효과적으로 인식하기 위해서는 필기 변이를 흡수하는 것뿐 아니라, 유사 문자간의 차이를 정확히 찾아내어 그 차이점을 부각시키는 것이 요구된다. 본 논문에서는 유사 문자간의 차이점을 부각시킬 수 있는 비선형 정규화 방법을 제안한다. 기존의 비선형 정규화 방법들이 영상의 지역적 복잡도를 균일화 함으로써 정규화를 수행했던 것에 반해, 제안하는 방법에서는 유사 문자쌍의 구분에 있어 지역적 공헌도에 기반하여 영상을 정규화한다. 즉, 유사 문자쌍 구분에 공헌도가 높은 지역은 확대하고 그렇지 않은 지역은 축소한다. 그 결과, 문자간에 서로 상이한 지역을 강조 함으로써 유사 문자쌍에 대한 구분력을 높인다. 실험 결과, 제안하는 방법으로 정규화된 영상에서는 유사 문자쌍의 차이점이 확대되었으며, 문자쌍의 구분 성능 또한 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.