• Title/Summary/Keyword: 구부림 손실

Search Result 6, Processing Time 0.026 seconds

A Study on the Optical Loss Variation of Optical Fiber Splicing Part due to Environment (광섬유 접속부의 환경 변화에 따른 손실변화 연구)

  • Yoo, Kang-Hee;Kim, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.349-357
    • /
    • 2007
  • The most sensitive part of the installed optical fiber fable is the optical loss variation of the splicing part according to the environmental changes. This paper presents the details of the experimental results of the external environmental changes on optical loss, such as bending, temperature variation, temperature variation after water osmosis and vibration. Through the bending test of optical fiber, rapid increase of optical loss was measured within the radius of 30mm. The result of optical loss variation within the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$ is less than 0.02dB. It was confirmed that the maximum optical loss increased up to 0.2dB in case of water osmosis within the temperature range of $-40^{\circ}C{\sim}80^{\circ}C$. There is small optical loss variation of 0.01dB under the 1mm vibration test. The experimental results of this paper can be used as the reference data for the design of the optical fiber cable splicing enclosure to protect the optical loss variation due to environmental changes.

A Study On The Bending Characteristics of Ribbon Cable Unit (리본광케이블 유니트의 구부림 특성 연구)

  • 이병철;이영탁;김미경
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.379-384
    • /
    • 1995
  • In order to construct B-ISDN, it is inevitable to introduce optical fiber of low loss and wide bandwidth. Coincidently, high count optical fiber cable is solely important to form optical subscriber network. The best structure of high count optical fiber cable to achieve multi-splicing as well as high density at the same time is the one of taking optical ribbon as a unit of accomodation. However, since optical ribbon has its own width. optical loss due to length difference during the bending of ribbon cable unit occurs in relatively easy way. Therefore, care should be taken during its manufacturing and storage. In t\1::; paper, strain, bending radius and lateral pressure of each fiber in ribbon due to the bending of ribbon cable unit are caculated theoretically. Hence, we have measured optical loss of each fiber as function of unit bending radius, when we bent the ribbon cable unit on the various reel. We found that the result accords well with the theoretical analysis. The result shows the importance to determine proper radius of reel used in ribbon cable manufacturing and storage. orage.

  • PDF

Fiber-optic Temperature Sensor Based on Bending Loss of Thermally Expanded Core Fiber (열확장 코어 광섬유의 구부림 손실을 이용한 광섬유형 온도 센서)

  • Kim, Kwang-Taek;Kang, Ji-Hoon;Cho, Kyu-Jung;Moon, Nam-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.12-15
    • /
    • 2010
  • In this paper, we have proposed and demonstrated a simple fiber-optic temperature sensor based on the bending loss of a TEC(thermally expended core) fiber attached to a bi-metal. The deformation of the bi-metal caused by the change in its temperature induces the bending loss of the TEC fiber. The experimental result shows that the temperature sensitivity and operation temperature range of the device are controllable through the adjustment of the structure of the expanded core fiber. The fabrication procedure of the device is described in detail.

A Study on the Variation of Optical Fiber Splicing Loss due to Environment (광섬유 접속부의 환경 변화에 따른 손실변화 연구)

  • Kim Young-Ho;Yoo Kang-Hee
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.105-110
    • /
    • 2006
  • The most sensitive part of the installed optical cable is the optical loss variation of the splicing point according to the environmental changes. This paper presents the details of the experimental results of the external environmental changes on optical loss, such as bending, temperature variation, temperature variation after water osmosis and variation. Through the bending test of optical fiber, rapid increase of optical loss was measured within the diameter of 30mm. The result of optical loss variation within the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$ is less than 0.02dB. It was confirmed that the maximum optical loss increased up to 0.2dB in case of water osmosis within the temperature range of $-40^{\circ}C{\sim}80^{\circ}C$. There is small optical loss variation of 0.01dB under the 1mm vibration test. The experimental results of this paper can be used as the reference data for the design of the optical fiber cable splicing enclosure to protect the optical loss variation due to environmental changes.

  • PDF

Variable Optical Attenuator Incorporating Dual Fiber Collimator and Bi-metal Actuator (이중 광 콜리메터와 바이메탈 엑추에이터를 이용한 가변 광감쇠기)

  • Kim, Kwang Taek;Kim, Duck Bong;Koh, Hanjun
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.28-31
    • /
    • 2018
  • In this paper, we have proposed and demonstrated a variable optical attenuator (VOA) incorporating a dual-fiber collimator and a bimetallic actuator. The optical attenuation between input and output single-mode fibers was tuned by tilting the angle of a reflection mirror fixed on the bimetal. The bimetal was heated or cooled by a thermoelectric cooler (TEC) and then moved the reflection mirror, due to bending and unreeling. The desired optical attenuation can be obtained through adjusting the electrical input into the TEC. The fabricated device showed 0.5 dB of insertion loss, 0.2 dB of maximum polarization-dependent loss, and 40 dB of dynamic range. The response time was measured to be about 5 s.