• 제목/요약/키워드: 구멍 가공

검색결과 185건 처리시간 0.023초

구멍이 있는 공작물의 가공시 형상특성 (Geometric Characteristics of Hole on Workpiece in Operation)

  • 이종선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.43-48
    • /
    • 2001
  • In this study, the characteristics of the surface around a hole on inlet and outlet of product which are manufactured by face mill or end mill cutting with a hole or a pocket in its surface, are investigated. Furthermore, experiment for optimization of process conditions to minimize the change of characteristics of milling cut surface after a hole cutting operation, is implemented. Applying the results in this study to surface manufacturing of mold products whose surface is uneven or metal products made by diecasting, reducing the number of sequence process to obtain fine surface is expected.

  • PDF

구멍이 있는 공작물의 가공시 형상특성 (Geometric Characteristics on Workpiece with Hole in Face Milling)

  • 이종선;원종진;안운상;홍석주;윤희중
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.1-6
    • /
    • 2002
  • This study is to investigate the characteristics of the surface around a hole on inlet and outlet of product which are manufactured by face mill or end mill cutting with a hole or a pocket in its surface. Furthermore, experiments for optimization of process conditions to minimize the change of characteristics of milling cut surface after a hole cutting operation are implemented. This result is apply to manufacture of mold products and metal products by diecasting.

미세 전해 구멍 가공에서의 가긍 조건에 따른 가공 간극 변화 특성 (Effect of Machining Conditions on machining gap in Micro Electrochemical Drilling)

  • 김보현;박병진;주종남
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.163-169
    • /
    • 2005
  • Micro hole is ode of basic elements for micro device or micro parts. Micro electrochemical machining (ECM) can be applied to the machining of micro holes less than 50 ${\mu}m$ in diameter, which it is not easy to apply other techniques to. For the machining of passivating metals such as stainless steel, machining conditions should be chosen carefully to prevent a passive layer. The machining conditions also affect the machining resolution, In this paper, machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel.

미세 구멍가공을 위한 전극성형 가공특성에 관한 연구 (A Study on the Characteristics of Electrode Fabrication for Micro Hole-making)

  • 이주경;이종항;박철우;조웅식
    • 대한기계학회논문집A
    • /
    • 제31권11호
    • /
    • pp.1053-1058
    • /
    • 2007
  • Micro-EDM technology (or the manufacture of miniature parts is used to make a micro hole. Two electrode shaping methods, mechanical electrode grinding and WEDG technique, have been studied. In this study, an electrode shaping method by using previously machined hole is introduced in order to obtain an optimal hole-making condition. Key factors such as applied voltage, capacitance, feedrate, and hole-dimension have an influence on the fabricating error of electrode shaping, which are taper ratio of a hole, electrode form accuracy, and electrode surface. Therefore, we try to investigate the optimal fabricating of electrode shaping from various experiments. Results from experiments, it was able to minimize the electrode fabricating error as voltage increases, and also applied feedrate and capacitance decreases.

미소구멍의 가공 깊이에 따른 미세방전 가공특성 (Micro-Hole Machining Using MEDM According to Machining Depth)

  • 김재현;김보현;류시형;주종남
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.227-232
    • /
    • 2003
  • In order to make a deep and precise micro-hole, electrode wear and clearance between the electrode and the workpiece are important parameters using micro-electrical discharge machining. In this study, experiments were carried out to show the characteristics of electrode wear and radial clearance with respect to the depth of machined hole. Electrode wear varied with respect to the depth of hole. With deeper machined hole, bigger clearance was observed. Also it was found that the diameter of electrode influences machining characteristics of deep holes.

엑시머 레이저를 이용한 파이렉스 유리의 미세 구멍 가공 (The Experimental Study in the Micro Drilling of Excimer Laser on Pyrex Glass)

  • 이철재;김하나;정윤상;전찬봉;박영철;강정호
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.99-103
    • /
    • 2012
  • Presently, A glass is widely used in telecommunication system, optoelectronic devices and micro electro mechanical systems. Micro drilling of glass using the laser can save processing cost and improve the accuracy. This paper experiments micro drilling using KrF excimer laser on the pyrex glass of $500{\mu}m$ thickness. We have experiment to find out optimum laser machining conditions of micro drilling of glass and ablation depth and influence by processing parameter suc'h pulse repetition rate, energy density and number of pulses. Pulse repetition rate don't influence ablation depth at the micro drilling of pyrex glass. Energy density influence micro drilling of parallelism and maximum thickness that can be drilled. Ablation depth is most influenced by number of pulses.

양방향 평면진동을 이용한 미세구멍가공 (Micro Drilling using 2-directional Vibration in a Plane)

  • 김기대
    • 한국기계가공학회지
    • /
    • 제9권4호
    • /
    • pp.38-43
    • /
    • 2010
  • By generating 2-directional vibration in a xy plane of workpiece table, a newly developed micro drilling using 2-directional vibration was carried out. The vibration was produced by applying sinusoidal voltages to the orthogonally arranged piezoelectric materials built in the workpiece excitation table. Through the micro-drilling experiments using poly-carbonate and brass material, it was found that micro drilling using 2-directional vibration in a workpiece table could be an efficient method to enhance the form accuracy of machined workpiece by suppressing burr formation at both entry and exit region. A higher form accuracy could be obtained by increasing stiffness of feeding mechanism, decrease of geometric tolerance of combining jig, and development of high performance excitation table which generates amplified vibration at higher frequency.

미세구멍의 미세방전 가공에서 가공율과 전극소모 특성 (Machining Rate and Electrode Wear Characteristics in Micro-EDM of Micro-Holes)

  • 김규만;김보현;주종남
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.94-100
    • /
    • 1999
  • Micro-EDM is widely used in machining of miro-parts such as micro-shafts and micro-holes. In order to select proper machining conditions and to reduce the machining time, it is necessary to understand machining characteristics under various machining conditions. Micro-hole machining tests were performed with round shape electrodes with different capacitances and voltages of the power source. The effects of the electrode rotational speed and diameter on the machining rate were also observed. From the experimental results, it was found that capacitance and voltage have significant effects on machining rate and the machined surface integrity. With higher capacitance and higher voltage, higher machining rate was observed together with poorer surface integrity. The electrode diameter was also found to have an effect on the machining rate and electrode wear.

  • PDF