• Title/Summary/Keyword: 구동 롤러

Search Result 72, Processing Time 0.018 seconds

Structural Stability Evaluation for Special Vehicle Slewing Bearing using Finite Element Analysis (유한요소해석을 통한 특수차량용 선회베어링의 구조 안전성 평가)

  • Seo, Hyun-Soo;Lee, Ho-Jun;An, Tae-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.511-519
    • /
    • 2021
  • Slewing bearing is applied to the transmission of rotational power of the body and turret in a special vehicle for anti-aircraft weapons that overcomes the enemy flight system approaching at low altitudes with rapid response fire. When the turret load and impact load generated when shooting are combined in performing the combat mission of a special vehicle, structural stability must be secured to achieve a successful function. Among the components of the slewing bearing, the stability of the components against the complex loads acting by the turret drive and shooting was evaluated by considering the shape and material characteristics of the ring-gear, roller, and wire-race. As a research method for stability evaluation, based on engineering theory, the strength characteristics of the components were examined by numerical calculations. Finite element analysis was performed on components using the ANSYS analysis program. The results of theoretical analysis and the results of finite element analysis were very similar. A structural stability evaluation for the slewing bearing, which was performed mainly on the analysis, confirmed that the design strength of the slewing bearing determined in the preliminary design in the early stage of localization development was sufficient.

Study on Outlier Analysis Considering the Spatial Distribution of Intelligent Compaction Measurement Values (지능형 다짐값의 공간적 분포를 고려한 이상치 분석 기법 연구)

  • Chung, Taek-Kyu;Cho, Jin-Woo;Chung, Choong-Ki;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.91-103
    • /
    • 2024
  • In this study, we propose an outlier detection method that considers the spatial distribution of intelligent compaction measurement values (ICMVs) to address the high variability of ICMVs measured continuously across an entire construction area. The proposed method initially identified cases where the CMV at a specific location decreased despite an increase in the number of compaction passes. Among these, values that significantly differed from those measured within a 1.5-m radius were classified as outliers. Applying this method to CMV data obtained from field tests, we found that it effectively excluded the influence of changes in roller operating conditions unrelated to compaction quality while considering the inherent heterogeneity of the soil. However, after removing the outliers, the coefficient of variation of CMV (21.4%-26.3%) remained higher than the 20% suggested by relevant standards. Further field tests are needed to modify the proposed outlier detection method and to establish reasonable criteria for the variability of ICMV.