• 제목/요약/키워드: 구글넷

검색결과 10건 처리시간 0.024초

근접 문맥정보와 대규모 웹 데이터를 이용한 단어 의미 중의성 해소

  • 강신재;강인수
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2009년도 춘계학술대회 미래 IT융합기술 및 전략
    • /
    • pp.208-211
    • /
    • 2009
  • 본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.

  • PDF

워드넷과 구글에 기반한 온톨로지 개체의 일반화 (Generalization of Ontology Instances Based on WordNet and Google)

  • 강신재;강인수
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.363-370
    • /
    • 2009
  • 본 논문은 온톨로지의 지식을 확장하기 위하여 웹 페이지 등 텍스트에서 추출된 온톨로지 개체(ontology instances)를 일반화하는 방법을 제시한다. 이를 위해서는 단어 의미 중의성 해소 과정이 필수적인데, 구글, 워드넷과 같은 오픈 API와 어휘 리소스를 이용하여 비교사학습 방법으로 해결하는 방법을 제안한다. 실험 결과 기존 연구에 비해 15.8%의 성능 향상을 얻을 수 있었다.

인공지능 기반 구글넷 딥러닝과 IoT를 이용한 의류 분류 (Classification of Clothing Using Googlenet Deep Learning and IoT based on Artificial Intelligence)

  • 노순국
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.41-45
    • /
    • 2020
  • 최근 4차 산업혁명 관련 IT기술 중에서 머신러닝과 딥러닝으로 대표되는 인공지능과 사물인터넷은 다양한 연구를 통해 여러 분야에서 우리 실생활에 적용되고 있다. 본 논문에서는 사물인터넷과 객체인식 기술을 활용한 인공지능을 적용하여 의류를 분류하고자 한다. 이를 위해 이미지 데이터셋은 웹캠과 라즈베리파이를 이용하여 의류를 촬영하고, 촬영된 이미지 데이터를 전이학습된 컨벌루션 뉴럴 네트워크 인공지능망인 구글넷에 적용하였다. 의류 이미지 데이터셋은 온전한 이미지 900개와 손상이 있는 이미지 900 그리고 총 1800개를 가지고 상하의 2개의 카테고리로 분류하였다. 분류 측정 결과는 온전한 의류 이미지에서는 약 97.78%의 정확도를 보였다. 결론적으로 이러한 측정결과와 향후 더 많은 이미지 데이터의 보완을 통해 사물인터넷 기반 플랫폼상에서 인공지능망을 활용한 여타 사물들의 객체 인식에 대한 적용 가능성을 확인하였다.

페이지 랭크지수와 질의 확장을 이용한 재랭킹 방법 (A Reranking Method Using Query Expansion and PageRank Check)

  • 김태환;전호철;최중민
    • 정보처리학회논문지B
    • /
    • 제18B권4호
    • /
    • pp.231-240
    • /
    • 2011
  • 사람들은 월드 와이드 웹 상에서 사용자가 원하는 정보를 검색하는 여러 알고리즘들을 구현해 왔다. 이렇게 구현된 검색 알고리즘 중 가장 좋은 기술을 가지고 있는 곳은 페이지랭크(PageRank)방식의 구글이다. 하지만 외부에서 참조하는 링크가 많은 문서를 가지고 있는 문서 즉, 대중들이 관심을 가지는 문서를 상위에 보여주는 페이지랭크 방식으론 사용자가 원하는 문서를 찾아서 제공하지 못할 수 있다. 개인에게 가치가 있는 문서를 찾기보다 대중에게 가치가 있는 문서를 찾기 때문이다. 이러한 문제를 해결하기 위하여 본 논문에서는 어휘의 의미를 정확히 표현하고 있는 워드넷을 이용하여 사용자 질의 이력 정보를 분석하여 현재 질의를 확장한 개인적 가치와 페이지 랭크지수를 이용한 대중적 가치를 모두 고려한 방법을 제안한다. 실험결과 제안한 방법은 상위 30개의 검색결과 중 평균 약 60% 결과들에 대해 만족하는 것으로 나타났으며, 구글 검색 결과에 비해 평균 약 14% 향상된 만족도를 나타내었다.

구강관리용품에 대한 검색어 분석을 통한 선호도 융합 분석 : 구글트렌드를 이용하여 (Analysis of preference convergence by analyzing search words for oralcare products : Using the Google trend)

  • 문경희;김장미
    • 한국융합학회논문지
    • /
    • 제10권6호
    • /
    • pp.59-64
    • /
    • 2019
  • 본 연구는 구강관리용품 중 가장 대표적인 칫솔과 치약에서 이용자가 얻고자 하는 관련검색어를 통하여 이용자가 기대하는 선택정보를 구글 트렌드를 활용, 분석하여 이를 구강관리용품에 대한 교육의 기초자료로 제공하고자 한다. 구글 트렌드에서 제공하는 최초 시점인 2006년부터 2018년 현재(9월)까지의 시기에서 영문 Toothbrush와 Toothpaste를 검색한 뒤 인기순으로 정렬하여 노출되는 관련 검색어 각 25개 총325개의 검색어를 연도별로 수집하였다. 그 후 이용자가 기대하는 검색기능을 파악하는 검색어 세부분석방법과 빅데이터 프로그램 넷마이너를 활용한 단어 네트워크 분석의 두가지 방법으로 분석하였다. 연구 결과 전 세계적으로 Toothbrush에 대하여 브랜드에 대한 기대와 관심이 높았으며 Toothpaste에 대하여 치약의 기능에 대한 기대와 관심이 높았다. 이를 통해 구강교육의 동기부여를 높이기 위해 칫솔은 브랜드, 치약은 치약의 기능에 대한 지식과 정보를 활용하고 제공함으로써 환자의 흥미를 높이는 것이 효과적으로 판단된다.

YOLO 기반 개체 검출과 Node.js 서버를 이용한 반려견 행동 분류 시스템 구현 (Implementation of a Classification System for Dog Behaviors using YOLI-based Object Detection and a Node.js Server)

  • 조용화;이혁재;김영훈
    • 융합신호처리학회논문지
    • /
    • 제21권1호
    • /
    • pp.29-37
    • /
    • 2020
  • 본 논문은 실시간 영상 분석을 통해서 반려견에 대한 객체를 추출해 내고, 추출된 이미지로부터 반려견 행동을 분류하는 방법을 구현한다. 반려견 객체 탐지를 위해서 Darknet YOLO를 사용하였으며, 추출된 이미지로부터 행동 패턴 분류는 구글에서 제공하고 있는 Teachable Machine을 이용하였다. 학습된 Teachable Machine은 구글 드라이브에 저장되어 node.js 서버 상에서 ml5.js로 구현하여 사용할 수 있다. 분류된 행동 패턴 결과는 사용자의 스마트 폰 또는 PC로 실시간 전송되며, 언제 어디서든 확인 가능할 수 있게 node.js 서버에서 socket.io 모듈을 사용해서 상호반응 웹 서버를 구현하였다.

합성곱 신경망을 이용한 '미황' 복숭아 과실의 성숙도 분류 (Grading of Harvested 'Mihwang' Peach Maturity with Convolutional Neural Network)

  • 신미희;장경은;이슬기;조정건;송상준;김진국
    • 생물환경조절학회지
    • /
    • 제31권4호
    • /
    • pp.270-278
    • /
    • 2022
  • 본 연구는 무대재배 복숭아 '미황'을 대상으로 성숙기간 중 RGB 영상을 취득한 후 다양한 품질 지표를 측정하고 이를 딥러닝 기술에 적용하여 복숭아 과실 숙도 분류의 가능성을 탐색하고자 실시하였다. 취득 영상 730개의 데이터를 training과 validation에 사용하였고, 170개는 최종테스트 이미지로 사용하였다. 본 연구에서는 딥러닝을 활용한 성숙도 자동 분류를 위하여 조사된 품질 지표 중 경도, Hue 값, a*값을 최종 선발하여 이미지를 수동으로 미성숙(immature), 성숙(mature), 과숙(over mature)으로 분류하였다. 이미지 자동 분류는 CNN(Convolutional Neural Networks, 컨볼루션 신경망) 모델 중에서 이미지 분류 및 탐지에서 우수한 성능을 보이고 있는 VGG16, GoogLeNet의 InceptionV3 두종류의 모델을 사용하여 복숭아 품질 지표 값의 분류 이미지별 성능을 측정하였다. 딥러닝을 통한 성숙도 이미지 분석 결과, VGG16과 InceptionV3 모델에서 Hue_left 특성이 각각 87.1%, 83.6%의 성능(F1 기준)을 나타냈고, 그에 비해 Firmness 특성이 각각 72.2%, 76.9%를 나타냈고, Loss율이 각각 54.3%, 62.1%로 Firmness를 기준으로 한 성숙도 분류는 적용성이 낮음을 확인하였다. 추후에 더 많은 종류의 이미지와 다양한 품질 지표를 가지고 학습이 진행된다면 이전 연구보다 향상된 정확도와 세밀한 성숙도 판별이 가능할 것으로 판단되었다.

남한지역 기후변화량 평가를 위한 고해상도 농업기후 자료 (A High-Resolution Agro-Climatic Dataset for Assessment of Climate Change over South Korea)

  • 허지나;박주현;심교문;김용석;조세라
    • 한국농림기상학회지
    • /
    • 제22권3호
    • /
    • pp.128-134
    • /
    • 2020
  • 국립농업과학원은 공동연구를 통해 기상청 소속 94개 종관기상관측소의 일별 기상자료를 기반으로 6가지 기상요소(최고·최저·평균 기온, 강수량, 일사량, 일조시간)에 대한 30m 및 270m 해상도의 격자형 일별 상세 기후 자료를 약 50년(1971-현재) 기간에 대해 생산하였고, 평년 기후값(1981-2010) 및 평년 대비 상세 기후 변화량 정보를 생산하였다. 이러한 일별 자료, 평년 자료 그리고 평년 대비 변화량 자료는 GeoTiff 형식으로 제공되며, 구글 크롬(Google Chrome) 에서 최적화된 https://agecoclim.agmet.kr 사이트에서 다운받을 수 있다. 본 연구 결과물은 현재 주식회사 에피넷과 국립농업과학원에서 공동으로 관리 중이며, 향후 기후·이상기상 변화량 분석 자동화 체계를 추가 보완을 통해 활용성을 제고하고, 기후 정보의 정확성을 향상시킬 예정이다.

차세대디지털도서관서비스에 대한 Y세대 이용자의 요구분석 연구 (A Study Analyzing Y Generation Users' Needs for Next Generation Digital Library Service)

  • 노영희
    • 정보관리학회지
    • /
    • 제31권3호
    • /
    • pp.29-63
    • /
    • 2014
  • 본 연구에서는 Y세대의 특징을 밝히고 Y세대가 요구하는 차세대디지털도서관서비스를 도출하고자 하였으며, 이들의 요구가 베이비붐세대와 어느 정도 차이를 보이는지를 비교하고자 하였다. 연구결과, 첫째, Y세대가 가장 많이 이용하는 디지털기기는 휴대폰 또는 스마트폰으로 나타났고, 다음으로 데스크탑 PC, 노트북 PC, 디지털 카메라 순으로 나타났으며, 사용비율에 있어서 약간의 차이는 있지만 그 순위는 베이비붐세대와 거의 유사하게 나타났다. 둘째, 이용하는 디지털서비스에 있어서 Y세대와 베이비붐세대는 상당한 차이를 보이고 있는 것으로 분석되었으며, Y세대는 인터넷 포털을 가장 많이 이용하고 베이비붐세대는 이메일서비스를 가장 많이 이용하는 것으로 나타났다. 셋째, Y세대와 베이비붐세대가 차세대디지털도서관에 요구하는 서비스를 클라우드서비스, 무한창조공간, 빅데이터, 증강현실, 구글글래스, 상황인식기술, 시맨틱서비스, SNS서비스, 디지털교과서서비스, RFID 및 QRCode 서비스, 도서관공간구성, 최첨단디스플레이기술, 기타 획기적인 서비스로 구분하여 조사한 결과, Y세대가 가장 높은 요구도를 보인 서비스는 빅데이터서비스였고, 베이비붐세대는 디지털교과서서비스였다.

뉴노멀(New Normal) 시대 언어네트워크 분석에 의한 예술정책 방향 연구 (A Study on the Direction of Art Policy through Semantic Network Analysis in New Normal Era)

  • 김미연;권병웅
    • 예술경영연구
    • /
    • 제58호
    • /
    • pp.153-177
    • /
    • 2021
  • 본 연구는 코로나19로 촉발된 뉴노멀 시대의 예술정책에 관한 이론과 국내외 정책 동향을 바탕으로 언어네트워크 분석을 시도하였다. 이를 위해 2020년 3월부터 9월까지의 '코로나'와 '예술'의 키워드가 들어간 자료를 구글(Google)뉴스와 웹(web)문서에서 수집하여 227개의 정제된 주제어를 추출하였고, 추출된 주제어를 넷마이너 프로그램을 통해 주제어 빈도분석과 중심성을 지표로 분석하였다. 또한 각 주제어 간의 관계 분석을 위해 언어네트워크의 시각화 분석을 시도하였다. 분석결과 가장 많은 빈도수를 드러낸 주제어는 '코로나'였고, '문화예술', '예술', '공연', '온라인', '지원'이 최다 빈도수를 기록한 그룹에 포함되었다. 중심성 분석에서는 '코로나'가 가장 빈도가 높았고, '시대', '이후', '포스트', '예술', '문화예술' 순으로 나타나 빈도수가 높은 '코로나'와 '예술', '문화예술'은 대부분의 중심성에서도 우위를 차지했다. 특히, 주제어 빈도수와 중심성 분석에서 공통으로 상위를 차지하는 주제어는 '온라인'과 '지원' '정책'이다. 이는 코로나19로 인해 사회적 거리두기의 일상화에 따라 비대면·온라인콘텐츠의 급부상과 예술계에 대한 지원정책이 필요함을 나타내고 있다고 볼 수 있다.