• Title/Summary/Keyword: 구간검지기

Search Result 81, Processing Time 0.026 seconds

A study on inter-camera vehicle tracking (카메라간 연계 차량 추적)

  • 송홍섭;소영성
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.70-73
    • /
    • 2003
  • 기존의 영상검지기는 한정된 구간에서 차량을 추출, 추적하는데 본 논문에서 제안한 카메라간 연계 추적 방법은 두 대의 카메라를 서로 연계하여 차량을 추적함으로써 넓은 구간에서도 효과적으로 차량을 추적할 수 있다. 한 대의 카메라는 전방을 검지하고 다른 카메라는 후방을 검지하여 전방 검지영역에서 추적한 차량을 후방 검지영역에서도 연계하여 추적하게 된다. 연계 추적을 위해 전방 카메라에서 취득한 차량의 차선정보와 차량의 대표 gray level 정보를 후방 카메라로부터의 영상 분석시 이용하여 차량 연계 추적을 한다.

  • PDF

A Vehicle Reidentification Algorithm using Inductive Vehicle Signatures (루프검지기 자기신호 패턴분석을 통한 차량재인식 알고리즘)

  • Park, Jun-Hyeong;O, Cheol;NamGung, Seong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.179-190
    • /
    • 2009
  • Travel time is one of the most important traffic parameters to evaluate operational performance of freeways. A variety of methods have been proposed to estimate travel times. One feasible solution to estimating travel times is to utilize existing loop detector-based infrastructure since the loops are the most widely deployed detection system in the world. This study proposed a new approach to estimate travel times for freeways. Inductive vehicle signatures extracted from the loop detectors were used to match vehicles from upstream and downstream stations. Ground-truthing was also conducted to systematically evaluate the performance of the proposed algorithm by recognizing individual vehicles captured by video cameras placed at upstream and downstream detection stations. A lexicographic optimization method vehicle reidentification algorithm was developed. Vehicle features representing the characteristics of individual vehicles such as vehicle length and interpolations extracted from the signature were used as inputs of the algorithm. Parameters associated with the signature matching algorithm were calibrated in terms of maximizing correct matching rates. It is expected that the algorithm would be a useful method to estimate freeway link travel times.

Development of Travel Time Estimation Algorithm for National Highway by using Self-Organizing Neural Networks (자기조직형 신경망 이론을 이용한 국도 통행시간 추정 알고리즘)

  • Do, Myungsik;Bae, Hyunesook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.307-315
    • /
    • 2008
  • The aim of this study is to develop travel time estimation model by using Self-Organized Neural network(in brief, SON) algorithm. Travel time data based on vehicles equipped with GPS and number-plate matching collected from National road number 3 (between Jangji-IC and Gonjiam-IC), which is pilot section of National Highway Traffic Management System were employed. We found that the accuracies of travel time are related to location of detector, the length of road section and land-use properties. In this paper, we try to develop travel time estimation using SON to remedy defects of existing neural network method, which could not additional learning and efficient structure modification. Furthermore, we knew that the estimation accuracy of travel time is superior to optimum located detectors than based on existing located detectors. We can expect the results of this study will make use of location allocation of detectors in highway.

Studies on Determining Optimal Downstream Loop Detector Location on Freeway Merging Section (고속도로 합류부 지점에서의 최적 검지기 설치 위치 산정에 관한 연구)

  • Yang, Choon-Heon;Son, Young-Tae
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.221-227
    • /
    • 2008
  • This study identifies the relationship between traffic data quality obtained from loop detectors and their location. Traffic data basically shows traffic flow conditions and thus, these information can be used as inputs for various transportation management strategies. Out study presents how to determine optimal downstream detector location on merging area in order to enhance the effects of ramp metering strategies. Microscopic simulation model, PARAMICS, is used as the main analytical tool. Assuming that detector location relies heavily on traffic flow characteristics in each roadway segment, we perform statistical analysis to identify homogeneous traffic conditions on merging area.

  • PDF

Development of a Emergency Situation Detection Algorithm Using a Vehicle Dash Cam (차량 단말기 기반 돌발상황 검지 알고리즘 개발)

  • Sanghyun Lee;Jinyoung Kim;Jongmin Noh;Hwanpil Lee;Soomok Lee;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.97-113
    • /
    • 2023
  • Swift and appropriate responses in emergency situations like objects falling on the road can bring convenience to road users and effectively reduces secondary traffic accidents. In Korea, current intelligent transportation system (ITS)-based detection systems for emergency road situations mainly rely on loop detectors and CCTV cameras, which only capture road data within detection range of the equipment. Therefore, a new detection method is needed to identify emergency situations in spatially shaded areas that existing ITS detection systems cannot reach. In this study, we propose a ResNet-based algorithm that detects and classifies emergency situations from vehicle camera footage. We collected front-view driving videos recorded on Korean highways, labeling each video by defining the type of emergency, and training the proposed algorithm with the data.

Development of a Controller with Multi-function for the Vehicle Detector Using Radar (레이더 차량 검지기를 위한 다기능 제어기 개발)

  • Lim, Sung-Kyu;Ahn, Seung-Yong;Lee, Seung-Yo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1242-1243
    • /
    • 2011
  • 차량 검지 시스템은 실시간으로 교통상황 자료를 수집하는 시스템으로, 관리대상 구간의 자료를 수집하여 시시각각 변하는 교통상황에 대한 효과적인 교통관리를 수행하도록 한다. 현재 차량 검지 시스템은 상당한 안정성과 정확성을 확보 하고 있기는 하나, 시스템 구성시 검지 시스템 자체의 구성에 드는 비용과 시간 보다는 센터와의 통신에 필요한 시스템 구축이나 전원 확보를 위한 전원선 공사등과 같은 주변 환경 요건 구축에 더욱 많은 비용과 시간이 드는 문제점이 있다. 이는 정보수집의 방식이 현재까지는 센터와 1:1 연결을 통한 정보교환에 의한 것이어서 전국단위의 N개 총신회선의 정보교환을 위해서는 1:N개의 통신회선이 필요하기 때문이다. 따라서 본 논문에서는 이러한 문제점 해결을 위한 레이더 차량 검지 시스템용 통합 프로토콜 제어기의 개발을 수행한다.

  • PDF

On-Line Departure time based link travel time estimation using Spatial Detection System (구간검지체계를 이용한 On-Line 출발시각기준 링크 통행시간 추정 (연속류를 중심으로))

  • Kim, Jae-Jin;No, Jeong-Hyeon;Park, Dong-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.157-168
    • /
    • 2006
  • Spatial detection system such as AVI, GPS, and Beacon etc. can provide spatial travel time only after a vehicle Passes through a road section. In this context, majority of the existing studies on the link travel time estimation area has focused on the arrival time-based link travel time estimation. rather than departure time-based link travel time estimation. Even if some of the researches on this area have developed departure time-based link travel time estimation algorithms, they are limited in that they are not applicable in a real-time mode. The objective of this study is to develop an departure time-based link travel time estimation algorithm which is applicable in a real-tine mode. Firstly, this study discussed the tradeoff between accuracy and timeliness of the departure time-based on-line link travel time estimates. Secondly, this study developed an departure time-based on-line link travel time estimation algorithm which utilizes the Baysian inference logic. It was found that the proposed approach could estimate departure time-based link travel times in a real-time context with an acceptable accuracy and timeliness.

Development of The Signal Control Algorithm Using Travel Time Informations of Sectional Detection Systems (구간검지체계의 통행시간정보를 이용한 신호제어 알고리즘 개발)

  • Jung, Young-Je;Kim, Young-Chan;Baek, Hyon-Su
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.181-191
    • /
    • 2005
  • This study developed an algorithm for real-time signal control based on the detection system that can collect sectional travel time. The signal control variable is maximum queue length per cycle and this variable has a sectional meaning. When a individual vehicle pass through the detector, we can gather the vehicle ID and the detected time. Therefor we can compute the travel time of an individual vehicle between consecutive detectors. This travel time informations were bisected including the delay and not. We can compute queue withdrawing time using this bisection and the max queue length is computed using the deterministic delay model. The objective function of the real-time signal control aims equalization of queue length for all direction. The distribution of the cycle is made by queue length ratios.

Regional Traffic Information Acquisition by Non-intrusive Automatic Vehicle Identification (비매설식 자동차량인식장치를 이용한 구간교통정보 산출 방법 연구)

  • Kang Jin-Kee;Son Youngtae;Yoon Yeo-Hwan;Byun Sangchul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.22-32
    • /
    • 2002
  • This paper describes about non-burial AVI (Automatic Vehicle Identification) system using general vehicle as probe car for obtaining more accurate traffic information while conserving road pavement surface. Existing spot traffic detectors have their own limits of not obtaining right information owing to its mathematical method. Burial AVI systems have some defects, causing traffic jam, needing much maintenance cost because of frequent cutting of loop and piezo-electric sensors. Especially, they have hard time to make right detection, when it comes to jamming time. Therefore, in this paper, we propose non-burial AVI system with laser trigger unit. Proposed non-burial AVI system is developed to obtain regional traffic information from normal Passing vehicle by automatic license number recognition technology. We have adapted it to national highway section between Suwon city and Pyong$\~$Taek city(9.5km) and get affirmative results. Vehicle detection rate of laser trigger unit is more than 95$\%$, vehicle recognition rate is 87.8$\%$ and vehicle matching rate is about 14.3$\%$. So we regard these as satisfying results to use the system for traffic information service. We evaluate proposed AVI system by regulation of some institutions which are using similar AVI system and the proposed system satisfies all conditions. For future study, we have plan of detailed research about proper lane number from all of the target lanes, optimal section length, information service period, and data fusion method for existing spot detector.

  • PDF