• Title/Summary/Keyword: 교통카드 트랜잭션 데이터베이스

Search Result 12, Processing Time 0.028 seconds

Mining Commuter Patterns from Large Smart Card Transaction Databases (대용량 교통카드 트랜잭션 데이터베이스에서 통근 패턴 탐사)

  • Park, Jong-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06a
    • /
    • pp.38-39
    • /
    • 2010
  • 수도권 대중교통 이용자는 2004년 서울시의 대중교통 체계 개편에 따라 교통 카드를 사용하여 버스와 지하철을 이용하게 되었다. 교통 카드를 사용하는 각 승객의 승차와 하차에 관한 데이터가 하나의 트랜잭션으로 구성되고, 하루 천만 건 이상의 트랜잭션들로 구성된 대용량 교통카드 트랜잭션 데이터베이스가 만들어지고 있다. 대중교통을 이용하는 승객들의 승차와 하차에 관한 여러 정보를 담고 있는 교통카드 트랜잭션 데이터베이스에서 유용한 패턴이나 정보를 탐사해내는 연구가 계속 진행되고 있다. 이런 연구 결과는 수도권 대중교통 정책을 입안하는데 중요한 기초 자료가 되고 수도권 승객들에게 대중교통을 보다 잘 이용할 수 있는 정보로 제공된다. 교통카드 이용률은 2006년 79.5%, 2007년 80.3%, 2008년 81.6%로 점차적으로 증가하고 있다. 대용량의 교통카드 트랜잭션 데이터베이스에 대한 연구를 살펴보면 하루 동안의 교통카드 트랜잭션 데이터베이스에서 순차 패턴을 탐사하는 알고리즘을 연구하였고[1], 승객들의 통행 패턴에 대한 분석연구를 확장하여 일 년에 하루씩 2004년에서 2006년까지 3일간의 교통카드 트랜잭션 데이터베이스로부터 승객 시퀀스의 평균 정류장 개수와 환승 횟수 등을 연도별로 비교하였다[2]. 수도권 지하철 시스템의 특성에 관한 연구로는 네트워크 구조 분석이 있었고[3], 승객의 기종점 통행 행렬(Origin-Destination trip matrix)에 의한 승객 흐름의 분포가 멱함수 법칙(power law)임을 보여주는 연구가 있었고[4], 지하철 교통망에서 모든 링크상의 승객들의 흐름을 찾아내는 연구가 있었다[5]. 본 논문에서는 교통카드 트랜잭션 데이터베이스에서 지하철 승객들의 통근 패턴을 탐사해내는 방법을 연구하였다. 수도권 지하철 네트워크에 대한 정보를 입력하고 하루치의 교통카드 트랜잭션 데이터베이스에 연구된 방법을 적용하여 8가지 통근 패턴들을 탐사해내고 분석하였다. 탐사된 패턴들 중에서 많은 승객들이 지지하는 출퇴근 패턴에 대해서는 시간대별로 승객수를 그래프로 보여주었다.

  • PDF

Classification of Subway Trip Patterns from Smart Card Transaction Databases (교통카드 트랜잭션 데이터베이스에서 지하철 탑승 패턴 분류)

  • Park, Jong-Soo;Kim, Ho-Sung;Lee, Keum-Sook
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.91-100
    • /
    • 2010
  • To understand the trip patterns of subway passengers is very important to making plans for an efficient subway system. Accordingly, there have been studies on mining and classifying useful patterns from large smart card transaction databases of the Metropolitan Seoul subway system. In this paper, we define a new classification of subway trip patterns and devise a classification algorithm for eleven trip patterns of the subway users from smart card transaction databases which have been produced about ten million transactions daily. We have implemented the algorithm and then applied it to one-day transaction database to classify the trip patterns of subway passengers. We have focused on the analysis of significant patterns such as round-trip patterns, commuter patterns, and unexpected interesting patterns. The distribution of the number of passengers in each trip pattern is plotted by the get-on time and get-off time of subway transactions, which illustrates the characteristics of the significant patterns.

Time-distance Accessibility Computation of Seoul Bus System based on the T-card Transaction Big Databases (교통카드 빅데이터 기반의 서울 버스 교통망 시간거리 접근성 산출)

  • Park, Jong Soo;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.539-555
    • /
    • 2015
  • This study proposes the methodology for measuring the time-distance accessibility on the Seoul bus system based on the T-card transaction databases and analyzes the results. T-card transaction databases contain the time/space information of each passenger's locations and times of the departure, transfers, and destination. We introduce the bus network graph and develop the algorithms for time-distance accessibility measurement. We account the average speed based on each passenger's get-in and getoff information in the T-card data as well as the average transfer time from the trip chain transactions. Employing the modified Floyd APSP algorithm, the shortest time distance between each pair of bus stops has been accounted. The graph-theoretic nodal accessibility has been given by the sum of the inverse time distance to all other nodes on the network. The results and spatial patterns are analyzed. This study is the first attempt to measure the time-distance accessibility for such a large transport network as the Seoul bus system consists of 34,934 bus stops on the 600 bus routes, and each bus route can have different properties in terms of speed limit, number of lanes, and traffic signal systems, and thus has great significance in the accessibility measurement studies.

  • PDF

Analysis of Passenger Flows in the Subway Transportation Network of the Metropolitan Seoul (서울 수도권 지하철 교통망에서 승객 흐름의 분석)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.316-323
    • /
    • 2010
  • We propose a method to find flows of transit users in the subway transportation network of the metropolitan Seoul and analyze the passenger flows on some central links of the network. The transportation network consists of vertices for subway stops, edges for links between two adjacent subway stops, and flows on the edges' Each subway transit user makes a passenger flow along edges of the shortest path from the origin stop to the destination stop in his trip. In this paper, we have developed a new algorithm to find the passenger flow of each link in the subway network from a large trip-transaction database of subway transit users. We have applied the algorithm to find the passenger flows from one day database of about 5 million transactions by the subway transit users. As results of the experiments, the travel behavior on 4 central subway links is analyzed in passenger flows and top 10 flows among all subway links are explained in a table.

Mining Trip Patterns in the Large Trip-Transaction Database and Analysis of Travel Behavior (대용량 교통카드 트랜잭션 데이터베이스에서 통행 패턴 탐사와 통행 행태의 분석)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.44-63
    • /
    • 2007
  • The purpose of this study is to propose mining processes in the large trip-transaction database of the Metropolitan Seoul area and to analyze the spatial characteristics of travel behavior. For the purpose. this study introduces a mining algorithm developed for exploring trip patterns from the large trip-transaction database produced every day by transit users in the Metropolitan Seoul area. The algorithm computes trip chains of transit users by using the bus routes and a graph of the subway stops in the Seoul subway network. We explore the transfer frequency of the transit users in their trip chains in a day transaction database of three different years. We find the number of transit users who transfer to other bus or subway is increasing yearly. From the trip chains of the large trip-transaction database, trip patterns are mined to analyze how transit users travel in the public transportation system. The mining algorithm is a kind of level-wise approaches to find frequent trip patterns. The resulting frequent patterns are illustrated to show top-ranked subway stations and bus stops in their supports. From the outputs, we explore the travel patterns of three different time zones in a day. We obtain sufficient differences in the spatial structures in the travel patterns of origin and destination depending on time zones. In order to examine the changes in the travel patterns along time, we apply the algorithm to one day data per year since 2004. The results are visualized by utilizing GIS, and then the spatial characteristics of travel patterns are analyzed. The spatial distribution of trip origins and destinations shows the sharp distinction among time zones.

  • PDF

Development of Integrated Accessibility Measurement Algorithm for the Seoul Metropolitan Public Transportation System (서울 대도시권 대중교통체계의 통합 시간거리 접근성 산출 알고리즘 개발)

  • Park, Jong Soo;Lee, Keumsook
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.1
    • /
    • pp.29-41
    • /
    • 2017
  • This study proposes an integrated accessibility measurement algorithm, which is applied to the Seoul Metropolitan public transportation system consisting of bus and subway networks, and analyzes the result. We construct a public transportation network graph linking bus-subway networks and take the time distance as the link weight in the graph. We develop a time-distance algorithm to measure the time distance between each pair of transit stations based on the T-card transaction database. The average travel time between nodes has been computed via the shortest-path algorithm applied to the time-distance matrix, which is obtained from the average speed of each transit route in the T-card transaction database. Here the walking time between nodes is also taken into account if walking is involved. The integrated time-distance accessibility of each node in the Seoul Metropolitan public transportation system has been computed from the T-card data of 2013. We make a comparison between the results and those of the bus system and of the subway system, and analyze the spatial patterns. This study is the first attempt to measure the integrated time-distance accessibility for the Seoul Metropolitan public transportation system consisting of 16,277 nodes with 600 bus routes and 16 subway lines.

Greedy Heuristic Algorithm for the Optimal Location Allocation of Pickup Points: Application to the Metropolitan Seoul Subway System (Pickup Point 최적입지선정을 위한 Greedy Heuristic Algorithm 개발 및 적용: 서울 대도시권 지하철 시스템을 대상으로)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.116-128
    • /
    • 2011
  • Some subway passengers may want to have their fresh vegetables purchased through internet at a service facility within the subway station of the Metropolitan Seoul subway system on the way to home, which raises further questions about which stations are chosen to locate service facilities and how many passengers can use the facilities. This problem is well known as the pickup problem, and it can be solved on a traffic network with traffic flows which should be identified from origin stations to destination stations. Since flows of the subway passengers can be found from the smart card transaction database of the Metropolitan Seoul smart card system, the pickup problem in the Metropolitan Seoul subway system is to select subway stations for the service facilities such that captured passenger flows are maximized. In this paper, we have formulated a model of the pickup problem on the Metropolitan Seoul subway system with subway passenger flows, and have proposed a fast heuristic algorithm to select pickup stations which can capture the most passenger flows in each step from an origin-destination matrix which represents the passenger flows. We have applied the heuristic algorithm to select the pickup stations from a large volume of traffic network, the Metropolitan Seoul subway system, with about 400 subway stations and five millions passenger transactions daily. We have obtained not only the experimental results in fast response time, but also displayed the top 10 pickup stations in a subway guide map. In addition, we have shown that the resulting solution is nearly optimal by a few more supplementary experiments.

  • PDF

Classification of the Seoul Metropolitan Subway Stations using Graph Partitioning (그래프 분할을 이용한 서울 수도권 지하철역들의 분류)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.343-357
    • /
    • 2012
  • The Seoul metropolitan subway system can be represented by a graph which consists of nodes and edges. In this paper, we study classification of subway stations and trip behaviour of subway passengers through partitioning the graph of the subway system into roughly equal groups. A weight of each edge of the graph is set to the number of passengers who pass the edge, where the number of passengers is extracted from the transportation card transaction database. Since the graph partitioning problem is NP-complete, we propose a heuristic algorithm to partition the subway graph. The heuristic algorithm uses one of two alternative objective functions, one of which is to minimize the sum of weights of edges connecting nodes in different groups and the other is to maximize the ratio of passengers who get on the subway train at one subway station and get off at another subway station in the same group to the total subway passengers. In the experimental results, we illustrate the subway stations and edges in each group by color on a map and analyze the trip behaviour of subway passengers by the group origin-destination matrix.

  • PDF

Visualization of Passenger Flows of the Metropolitan Seoul Subway System (서울 수도권 지하철 교통망 승객 흐름의 시각화)

  • Kim, Ho-Sun;Park, Jong-Soo;Lee, Keum-Sook
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.397-405
    • /
    • 2010
  • This study proposes visualization methods of the diurnal passenger flows on the Metropolitan Seoul Subway system (MSSs) and examines the passenger trip behaviors of major central business districts (CBDs). We mine the MSS passenger flow information from a single day T-card passenger trip transaction database. It is practically intractable to analyze such flows, involving huge, complex space-time data, by means of general statistical analysis. On the other hand, dynamic visualizations of the passenger flows make it possible to analyze intuitively and to grasp effectively characteristics of the passenger flows. We thus propose several methods to visualize the passenger flow information. In particular, we visualize dynamic passenger flows of each link on the subway network and analyze the time-space characteristics of passenger ridership for the three major CBDs. As the result, we can ascertain the strong association between CBD and subway line and clarify the distinction among three major CBDs in the diurnal patterns of subway passenger flow.

Network Structures of The Metropolitan Seoul Subway Systems (서울 대도시권 지하철망의 구조적 특성 분석)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.459-475
    • /
    • 2008
  • This study analyzes the network structure of the Metropolitan Seoul subway system by applying complex network analysis methods. For the purpose, we construct the Metropolitan Seoul subway system as a network graph, and then calculate various indices introduced in complex network analysis. Structural characteristics of Metropolitan Seoul subway network are discussed by these indices. In particular, this study determines the shortest paths between nodes based on the weighted distance (physical and time distance) as well as topological network distance, since urban travel movements are more sensitive for them. We introduce an accessibility measurement based on the shortest distance both in terms of physical distance and network distance, and then compare the spatial structure between two. Accessibility levels of the system have been getting up overall, and thus the accessibility gaps have been getting lessen between center located subway stops and remote ones during the last 10 years. Passenger traffic volumes are explored from real passenger transaction databases by utilizing data mining techniques, and mapped by GIS. Clear differences reveal between the spatial patterns of real passenger flows and accessibility. That is, passenger flows of the Metropolitan Seoul subway system are related with population distribution and land use around subway stops as well as the accessibility supported by the subway network.

  • PDF