• Title/Summary/Keyword: 교통정보수집주기

Search Result 57, Processing Time 0.026 seconds

Implementation of Linkage System of Traffic Applied USN (USN을 활용한 교통제어기의 연동시스템 구현)

  • Jin, Hyun-Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.247-252
    • /
    • 2014
  • Traffic network is composed of passing vehicls, delayed vehicles, traffic situation which is traffic incomes of traffic interfacing system. Traffic green time light is concluded by inside input factor, that is green light cycle, yellow light cycle, led light cycle, which light cycle is sensor inputs. That light cycle is converted to traffic phase composed of passing peoples and delayed vehicles, whose intervals is concluding of traffic network factors composed of consumptiom power factors, delayed time situation, occupying sensor nodes. This is very important sector,because of much poor traffic situation.

A Determination Model of the Data Transmission-Interval for Collecting Vehicular Information at WAVE-technology driven Highway by Simulation Method (모의실험을 이용한 WAVE기반 고속도로 차량정보 전송간격 결정 모델 연구)

  • Jang, Jeong-Ah;Cho, Han-Byeog;Kim, Hyon-Suk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.4
    • /
    • pp.1-12
    • /
    • 2010
  • This paper deals with the transmission interval of vehicle data in smart highway where WAVE (Wireless Access for Vehicular Environments) systems have been installed for advanced road infrastructure. The vehicle data could be collected at every second, which is containing location information of the vehicle as well the vehicle speed, RPM, fuel consuming and safety data. The safety data such as DTC code, can be collected through OBD-II. These vehicle data can be used for valuable contents for processing and providing traffic information. In this paper, we propose a model to decide the collection interval of vehicle information in real time environment. This model can change the transmission interval along with special and time-variant traffic condition based on the 32 scenarios using microscopic traffic simulator, VISSIM. We have reviewed the transmission interval, communication transmission quantity and communication interval, tried to confirm about communication possibility and BPS, etc for each scenario. As results, in 2-lane from 1km highway segment, most appropriate transmission interval is 2 times over spatial basic segment considering to communication specification. In the future, if a variety of wireless technologies on the road is introduced, this paper considering not only traffic condition but also wireless network specification will be utilized the high value.

Video Image Detector Calibration Period Decision (영상검지기 교정주기 설정방안)

  • Lee, Chung-Won;Baik, Nam-Cheol;Song, Young-Hwa;Jang, Jin-Hwn
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.177-185
    • /
    • 2005
  • The accuracy of a video image detector(VID) is gradually reduced due to the various environmental and mechanical factors. But there has been no systematic research about this VID accuracy decreasing. To maintain a proper level of VID accuracy for the advanced traffic management. a regular VID calibration process needs to be introduced. Because of its cost, however. the calibration cannot be performed frequently. Therefore, the method to decide the optimal calibration interval should be studied in details. This study presents two different calibration interval decision methods. Using the invented data collection equipment. some data in the field were collected and analyzed. which were used for the adaptability checking. Although the data were limited. the result is pretty promising. More data needs to be investigated later and this study will help to maintain the data quality of the ITS center.

The Design of Meteorological Information Gathering System Using Public Traffic System (대중교통 체계를 이용한 기상정보 수집 시스템의 설계)

  • Pan, Ye;Kim, Soo-Hwan;Lee, In-Taek;Choi, Jin-Ho;Choi, Jin-Oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.110-112
    • /
    • 2010
  • Because the building of new meteorological observation towers requires high cost, a collection of precise meteorological data over city area is not easy. To collect atmosphere environment data or meteorological data precisely, a new approach is required. This paper introduces a new meteorological data collecting system using the public traffic systems such as regular route bus. On real time, the regular route bus can provide a meteorological data in periodic time interval and provide them on static route. Without constructing new facilities, only simple sensing and transmission equipments to attach on the bus are needed.

  • PDF

Development of The Signal Control Algorithm Using Travel Time Informations of Sectional Detection Systems (구간검지체계의 통행시간정보를 이용한 신호제어 알고리즘 개발)

  • Jung, Young-Je;Kim, Young-Chan;Baek, Hyon-Su
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.181-191
    • /
    • 2005
  • This study developed an algorithm for real-time signal control based on the detection system that can collect sectional travel time. The signal control variable is maximum queue length per cycle and this variable has a sectional meaning. When a individual vehicle pass through the detector, we can gather the vehicle ID and the detected time. Therefor we can compute the travel time of an individual vehicle between consecutive detectors. This travel time informations were bisected including the delay and not. We can compute queue withdrawing time using this bisection and the max queue length is computed using the deterministic delay model. The objective function of the real-time signal control aims equalization of queue length for all direction. The distribution of the cycle is made by queue length ratios.

Implementation of a Vehicle Monitoring System using Multimodal Information (다중 정보를 활용하는 차량 모니터링 시스템의 구현)

  • Park, Su-Wan;Son, Jun-U
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.41-48
    • /
    • 2011
  • In order to detect driver's state in a driver safety system, both overt and covert measures such as driving performance, visual attention, physiological arousal and traffic situation should be collected and interpreted in the driving context. In this paper, we suggest a vehicle monitoring system that provides multimodal information on a broad set of measures simultaneously collected from multiple domains including driver, vehicle and road environment using an elaborate timer equipped as a soft synchronization mechanism. Using a master timer that records key values from various modules with the same master time of short and precise interval, the monitoring system provides more accurate context awareness through synchronized data at any given time. This paper also discusses the data collected from nine young drivers performing a cognitive secondary task through this system while driving.

Velocity and Distance Estimation-based Sensing Data Collection Interval Control Technique for Vehicle Data-Processing Overhead Reduction (차량의 데이터 처리 오버헤드를 줄이기 위한 이동 속도와 거리 추정 기반의 센싱 데이터 수집 주기 제어 기법)

  • Kwon, Jisu;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1697-1703
    • /
    • 2020
  • Sensor nodes that directly collect data from the surrounding environment have many constraints, such as power supply and memory size, thus efficient use of resources is required. In this paper, in a sensor node that receives location data of a vehicle on a lane, the data reception period is changed by the target's speed estimated by the Kalman filter and distance weight. For a slower speed of the vehicle, the longer data reception interval of the sensor node can reduce the processing time performed in the entire sensor network. The proposed method was verified through a traffic simulator implemented as MATLAB, and the results achieved that the processing time was reduced in the entire sensor network using the proposed method compared to the baseline method that receives all data from the vehicle.

Systematic Error Term Analysis on Bus Arrival Time Estimation (버스정보시스템(BIS) 정류장도착예정시간 시스템오차 연구)

  • Kim, Seung-Il;Kim, Yeong-Chan;Lee, Cheong-Won
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.4 s.90
    • /
    • pp.117-127
    • /
    • 2006
  • Many large cities in Korea have implemented or planed to implement a bus information system(BIS) to improve service quality for bus Passengers, mainly by Providing bus arrival time at bus stations. In those systems, similar systematic errors to estimate the bus arrival time occur, which are caused by the cycle time to identify each bus location, the information processing time of the center system, and the cycle time to update the bus arrival information on each terminal. This paper investigated each cause sequentially and estimated three expectations related to the above three causes, respectively using the random incidence concept. Through a validation using real data from a BIS in a city in Korea, fairly amount of improvements on the bus arrival time estimation have been observed.

Influence of Disturbances in Optimal Period Establishment for the Rapid Traffic Signal Control (신속교통신호제어를 위한 그 최적주기에 있어서의 외란의 영향)

  • 양흥석;김호윤
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.5
    • /
    • pp.16-20
    • /
    • 1973
  • The most important thing in locating disturbances in optimal rapid traffic singnal control is to collect information cocerning toraffit flow by means of a detection method. In order to set up an optimal traffic singnal period, the analysis of a delay time phenomena in the signal period must also be considered. In fact, each of the distributed traffic quantities on the road are not similar factors in view of speeds and distances of succeeding cars. The causing factors are analyzed by the method of control engineering analysis, and they are coincident with disturbance. Thus distubances cause errors. Distubances are fuctions of time, and are classified into three conditions: Natural road state and weather are the first. The second is structures and function of vehicles, and the third is inducedbydrivers. This thesis deals with the last two cases except the first one for maximum utilization of the existing road state and weather conditions. The first condition remains constant, and then there exist some relations between vehicles and drivers. In the long run, it can be shown that the scheme for minimizing whole errors in the optimal traffic signal time setting is definitely presented.

  • PDF

Development of the Optimal Signal Control Algorithm Based Queue Length (대기길이 기반의 최적 신호제어 알고리즘 개발)

  • 이철기;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.135-148
    • /
    • 2002
  • In this paper, a queue length calculation algorithm using image detectors has been proposed. The algorithm produces the queue length using a pair of image detectors installed both on upstream and on downstream of a corridor. In addition, a new framework for controlling the traffic signal system based on queue length has been presented. More specifically, the scheme of determining the cycle time and green split using the queue lengths has been proposed. To validate the results, a simulation study was conducted with a network environment. Results showed that the proposed method gave better operational performance than a traditional method. However, additional validation effort is necessary in order to apply the real traffic conditions.