• Title/Summary/Keyword: 교통운영상태분석

Search Result 122, Processing Time 0.023 seconds

A Study on Ground Control System Design by User Classification to Increase Drone Platform Usability (드론 플랫폼 활용성 증대를 위한 사용자 맞춤형 지상 제어 시스템 설계 연구)

  • Ukjae Ryu;Yanghoon Kim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.56-61
    • /
    • 2022
  • Various convergence technologies discovered through the 4th industrial revolution are permeating the industry. Drones are being used in industries such as construction, transportation, and national defense based on convergence technology. Quart-copter drone control is being used in a wide range of fields from the visual field of operation with the naked eye to the remote field of view using GCS. If we classify those who operate industrial drones, there are general pilots who directly use drones, instructors who train drone pilots, and mechanics who check the status of drones and use them for a long time. Depending on the shape of the screen of the drone GCS, a user's quick response or key data can be acquired. Accordingly, in this study, GUI characteristics were analyzed for the mission planner GCS and a screen composition method according to the user was proposed.

The cooperation of civil aviation and legal and political issues related to direct route operation between South and North Korea (남북간 민간항공협력과 직항로 개설 운영상의 법적 정책적 과제)

  • Kim, Maeng-Sern;Hong, Soon-KiI
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.17
    • /
    • pp.111-132
    • /
    • 2003
  • The air transport industry is the most important as means of human exchange between the countries. Because the spread effect and the durability by aviation cooperation between the countries are much higher than any other industry, a research about air transport industry is very important to allied industry field as well as national policy about International cooperation and integration. Specially, according to the economic interchange with North Korea becomes active, the role of air transport as related traffic network with North Korea becomes more important. The number of flights is increasing sharply after South-North summit meeting, and two sides established and are using temporary direct route between South-North Korea. When we consider that the number of flights utilizing temporary direct route is increasing every year, It is not desirable to use temporary routes continuously because the current agreement between South and North cant be reliable far the case of unexpected circumstance. In addition, the current agreement is not based on the international standards. The paper is to study the condition to promote the coordination of civil aviation in the whole Korean peninsula. As known, the aviation system in North Korea is mainly operated by military unit. The study will review the current status of air transport system of South and North and the effective way of cooperation of civil aviation between both sides. The cooperation between governments as well as between airlines is studied. The establishment of Air Traffic Service Agreement is going to be handled heavily because the stable air traffic service is the most required base for the operation of air transport. The authors also try to find a way to support the development of infrastructure of aviation industry in North Korea.

  • PDF

Estimation of Pedestrian Capacity for Walkway (보행자 도로의 용량산정)

  • 임정실;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2002
  • The purpose of in this paper is to estimate the capacity and to suggest the level of service for pedestrian walkway. To estimate the pedestrian walkway capacity, Pedestrian density and speed were collected at the walkways in the subway station and the sidewalks. The simple linear repression of pedestrian density and speed models were developed for the relationships between the pedestrian flow rate and the pedestrian speed. The analysis results are as follow : First. the ranges of capacity for walkway were found minimum 106p/m/m and maximum 126p/m/m. The capacity of walkway was suggested to 106p/m/m for 2001 KHCM. Second, it found that the range of the critical speeds were between 40m/minute and 43m/minute and the range of the critical densities were between 2.65 p/$m^2$ and 2.85 p/$m^2$. Third, the range of level of service are similar to that of the 2,000 US HCM. This study suggests that occupancy, density and speed at Los E use 0.38$m^2$/p, 2.6 p/$m^2$ and 40m/minute respectively.

Development of a Portable-Based Smart Structural Response Monitoring System and Evaluation of Field Applicability (포터블 기반 스마트 구조 응답 모니터링 시스템 개발 및 현장 적용성 평가)

  • Sangki Park;Dong-Woo Seo;Ki-Tae Park;Hojin Kim;Thanh Bui-Tien;Lan Nguyen-Ngoc
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.147-156
    • /
    • 2023
  • Because the behavior of cable bridges is dominated by dynamic response and is relatively complex, short- and long-term field monitoring are often required to evaluate the bridge condition. If a permanent SHMS (Structural Health Monitoring System) is not installed, a portable monitoring system is needed for the checking of bridge condition. In this case, it can be difficult to operate the portable monitoring system due to limited conditions such as power and communication according to the location and type of the bridge. In this study, the portable-based smart structural response monitoring system is developed that can be effectively used for short- and long-term monitoring of cable bridges in Korea and Southeast Asia. The developed system is a multi-channel portable data acquisition and analyzer that can be operated for a long time in the field using its own power supply system, and is included with the automated analysis algorithm for the dynamic characteristics of cable bridges using real-time data. In order to evaluate the field applicability of the developed system, field demonstration was conducted on cable bridges in Korea and Vietnam. Through the demonstration, the reliability and efficiency of field operation of the developed system were confirmed, and additionally, the possibility of application to overseas markets was confirmed in cable bridge monitoring field.

A Study on Process Safety System Analysis for Application Process Safety Performance Indicators (공정안전성과지표 적용을 위한 공정안전시스템 분석방안 연구)

  • Ko, Byung Seok;Lim, Dong-Hui;Kim, Min-Seop;Seol, Ji Woo;Yoo, Byung Tae;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.27-38
    • /
    • 2022
  • In developed countries, the number of accidents has significantly decreased with the introduction of the process safety management system, but it has a regulatory nature and it is difficult to show the actual situation of workplace safety management. Many organizations recommend the use of process safety performance indicators to comprehensively monitor process safety status. In this study, for the application of process safety performance indicators, the related guidelines were compared and analyzed, and the method of using the process safety system of the workplace as an indicator was reviewed. In literature indicators, compliance with procedures is mainly checked, whereas in system-based indicators, procedures or inspections for a specific purpose of the safety system can be clearly identified, and the operation status can be measured and monitored. It can be seen that this characteristic is more advantageous in terms of the clarity of the supplements derived in operating safety management activities. Using this, it is possible to effectively show the level of safety management in the workplace.

A Study on the Road Safety Analysis Model: Focused on National Highway Areas in Cheonbuk Province (도로 안전성 분석 모형에 관한 연구: 전라북도 국도 권역을 중심으로)

  • Lim, Joonbeom;Kim, Joon-Ki;Lee, Soobeom;Kim, Hyunjin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.583-595
    • /
    • 2014
  • Currently, Korean transportation policies are aiming for increase of safety and environment-friendly and efficient operation, by avoiding construction and expansion of roads, and upgrading road alignments and facilities. This is revealed by that there have been 22 road expansion projects (30%) and 50 road improvement projects (70%) under the 3rd Five-Year Plan for National Highways ('11~'15), while there were 53 road expansion projects (71%) and 22 road improvement projects (29%) under the 2nd Five-Year Plan for National Highways. For more effective road improvement projects, there is a need of choosing projects after an objective and scientific safety assessment of each road, and assessing safety improvement depending on projects. This study is intended to develop a model for this road safety analysis and assessment. The major objective of this study is creating a road safety analysis and assessment model appropriate for Korean society, based on the HSM (Highway Safety Manual) of the U.S. In order to build up data for model development, the sections thought to have identical geometrical structure factors in 5 lines, Cheonbuk province, were divided as homogeneous sections, and representative values of geometric structures, facilities, traffic volume, climate conditions and land usage were collected from the 1,452 sections divided. In order to build up data for model development, the sections thought to have identical geometrical structure factors in 5 lines, Cheonbuk province, were divided as homogeneous sections, and representative values of geometric structures, facilities, traffic volume, climate conditions and land usage were collected from the 1,452 sections divided. The collected data was processed correlation analysis of each road element was implemented to see which factor had a big effect on traffic accidents. On the basis of these results, then, an accident model was established as a negative binomial regression model.Using the developed model, an Crash Modification Factor (CMF) which determines accident frequency changes depending on safety performance function (SPF) predicting the number of accident occurrence through traffic volume and road section expansion, road geometric structure and traffic properties, was extracted.

On-site Application of a Vehicle Tunnel Ventilation Simulator (도로터널 환기시뮬레이션 모델 현장적용 연구)

  • 이창우;김효규
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.319-327
    • /
    • 2001
  • Introduction of new design tools has been required to optimally design and operate the ventilation system of long vehicle tunnels.. The demand has led to wide spread use of the simulation technique throughout the would to analysis the dynamic relationship among the variables associated with vehicle tunnel ventilation. This paper aims at performing on-site study at local tunnels to test the applicability of NETVEN, a simulation model vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels model of vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels employing different ventilation systems as well as traffic methods. There were some discrepancies sound between the simulation output and measurements and the following four factors are considered to mainly cause those disagreement. (1) The real situation shows distinctive transient and retarding characteristics with respect to air flow and contaminant dispersion, while ventilation forces are not steady-state and in particular those traffic and climatic variables show significant instantaneous variation. (3) Near the exit portal, the CO levels show bigger differences. The general trend is that data with higher CO concentrations carry bigger discrepancies. Turbulent diffusion is though to be the main reason for it and also contribute to the fact hat the highest CO concentrations are found at the locations somewhat inward, not at the exit portals. (4) Higher traffic rate results in higher discrepancies of ventilation velocity. Along with the exhaust characteristics, the vehicle aerodynamic characteristics need to be studied continuously in order to reduce the velocity disagreement.

  • PDF

Analysis of the Effect of Carbon Dioxide Reduction by Changing from Signalized Intersection to Roundabout using Tier 3 Method (Tier 3 방법을 이용한 회전교차로 도입에 따른 $CO_2$ 감축효과)

  • Lee, Jung-Beom;Lee, Seung-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.105-112
    • /
    • 2011
  • Delay reduction of vehicles at the intersection is highly dependent on the signal operation method. Improper traffic operation causes the violation of the traffic regulations and increasing traffic congestion. Delay because of congestion has contributed to the increase in carbon dioxide in the atmosphere. The focus of this paper is to measure the amount of carbon dioxide when the intersection is changed to roundabout. Even though, Intergovernmental Panel on Climate Change(IPCC) recommends Tier 1 method to measure the amount of greenhouse gas from vehicles, this paper used Tier 3 method because we could use the data of average running distance per each vehicle model. Two signalized intersections were selected as the study area and the delay reductions of roundabout operation were estimated by VISSIM microscopic simulation tool. The control delay for boksu intersection reduced from 28.6 seconds to 4.4 seconds and the KRIBB intersection sharply reduced from 156.4 seconds to 23.6 seconds. In addition, carbon dioxide for two intersections reduced to 646.5 ton/year if the intersection is changed to roundabout. Future research tasks include testing the experiment for networks, as well as for various intersection types.

Signal Timing Calculation Model of Transit Signal Priority using Shockwave Theory (충격파 이론을 이용한 대중교통 우선신호의 신호시간 산정모형)

  • Park, Sang Sup;Cho, Hye Rim;Kim, Youngchan;Jeong, Youngje
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.897-905
    • /
    • 2015
  • This research suggested the traffic signal calculation model of active transit signal priority using a shockwave model. Using this signal priority timing optimization model, the shockwave area is computed under the condition of Early Green and Green Extension among active transit signal priority techniques. This study suggested the speed estimation method of backward shockwave using average travel time and intersection passing time. A shockwave area change is calculated according to signal timing change of transit signal priority. Moreover, this signal timing calculation model could determine the optimal signal priority timings to minimize intersection delay of general vehicles. A micro simulation analysis using VISSIM and its user application model ComInterface was applied. This study checked that this model could calculate the signal timings to minimize intersection delay considering saturation condition of traffic flow. In case studies using an isolated intersection, this study checked that this model could improve general vehicle delay of more over ten percentage as compared with equality reduction strategy of non-priority phases. Recently, transit priority facilities are spreading such as tram, BRT and median bus lane in Korea. This research has an important significance in that the proposed priority model is a new methodology that improve operation efficiency of signal intersection.

Measuring the Non-market Value of the Introduction of Electric Vehicles to National Parks Against Climate Change (기후변화의 대응수단으로서 국립공원 내 전기자동차 도입의 비시장적 가치 추정에 관한 탐색적 연구)

  • Kim, Sang-Tae;Min, Woong-Ki;Kim, Nam-Jo
    • Review of Culture and Economy
    • /
    • v.17 no.2
    • /
    • pp.81-102
    • /
    • 2014
  • As carbon dioxide, the main greenhouse gas, is generally emitted by vehicles, the development and distribution of electric cars is important for the sustainability of environmentally-friendly tourism, especially in national parks. National parks in Korea, however, still see the use of traditional vehicles powered by internal combustion engines in the handling of visitors and the transportation of goods and staff. Such engines being the cause of environmental problems such as exhaust emission and noise pollution, the introduction of electric cars in national parks is needed. This study aims to analyze the economic value of electric cars in national parks as well as contribute to the development of the Green Transportation model in tourism destinations. The study used a logit model to estimate the willingness to pay for the introduction of electric cars in national parks. Adults over the age of twenty, with gender and age apportioned equally, were surveyed using questionnaires that included dichotomous as well as demographic questions. The findings show that the amount an individual is willing to pay for the purpose of environmental conservation is 3,948 won, while the value the national parks would derive from the use of electric cars is 56,138,130,000 won. The introduction of electric cars in national parks is expected to offer both direct and indirect benefits while helping to improving the environment of the national parks by eliminating exhaust emission and noise. This introduction would also be a response to climate change that can be taken by society as a whole.