• Title/Summary/Keyword: 교통신호제어

Search Result 321, Processing Time 0.028 seconds

A Fuzzy Traffic Light Controller Adaptable to the Congestion of Traffic based on the Membership Function Modification Algorithm (소속함수 수정 알고리즘에 의한 혼잡상황에 적응하는 퍼지 교통 신호 제어기)

  • Choi, Wan-Kyoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.309-312
    • /
    • 2001
  • 본 연구에서는 상류부 교차로에서 발생하는 교차로 막힘 현상으로 인해 진행방향의 녹색시간의 손실이라는 장애가 발생하게되는 상황을 고려하기 위해 진행차선의 정체도를 도입하여 교통 혼잡상황에 적절히 대응할 수 있는 퍼지 교통신호 제어기를 제안한다. 먼저 입출력 공간을 균등 분할한 퍼지 교통신호 제어기를 구성하고, 소속함수 수정알고리즘에 의해 제어기를 수정한다. 실험을 통해 고정식 제어기, 균등 분할한 제어기와 수정된 제어기의 성능을 교차로 지체시간, 진입율과 통과율 면에서 비교하였다. 실험 결과는 수정된 제어기가 다른 제어기들에 비해 향상된 성능을 보여주었다.

  • PDF

Intelligent Traffic Light Control using Fuzzy Method (퍼지 기법을 이용한 지능형 교통 신호 제어)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1593-1598
    • /
    • 2012
  • In this paper, we propose an intelligent signal control method based on fuzzy logic applicable in real time. We design membership functions to model occupied time and the number of vehicles for each lane. A priority for each signal phase is computed by the popular Max-Min fuzzy inference based on control rules and membership degrees of prepared two functions at any given time. A tie breaking scheme is considering weighted sum of the rate of occupied time per number of vehicles in that block and the standard deviation of these blocks. Only a signal phase with the highest priority is opened and all others are closed and the duration of the phase opening is computed proportional to the rate of number of weighting vehicles in that signal per all weighted vehicles. The simulation result shows that the proposed method is more efficient than the static control in all simulation conditions in $2{\times}3$ experimental designs with the number of vehicles in intersection and congestion degrees that have all three levels.

Development of Traffic State Classification Technique (교통상황 분류를 위한 클러스터링 기법 개발)

  • Woojin Kang;Youngho Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • Traffic state classification is crucial for time-of-day (TOD) traffic signal control. This paper proposed a traffic state classification technique applying Deep-Embedded Clustering (DEC) method that uses a high dimensional traffic data observed at all signalized intersections in a traffic signal control sub area (SA). So far, signal timing plan has been determined based on the traffic data observed at the critical intersection in SA. The current method has a limitation that it cannot consider a comprehensive traffic situation in SA. The proposed method alleviates the curse of dimensionality and turns out to overcome the shortcomings of the current signal timing plan.

The Traffic Signal control System Applying Fuzzy Reasoning (퍼지추론을 적용한 교통 신호 제어 시스템)

  • Kim, Mi-Gyeong;Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.977-987
    • /
    • 1999
  • The current traffic signal control systems are operated depending on the pre-planned control scheme or the selected control scheme according to a period of time. The problem with these types of traffic control systems is that they can not cope with variant traffic flows appropriately. Such a problem can be difficult to solve by using binary logic. Therefore, in this 0paper, we propose a traffic signal control system which can deal wit various traffic flows quickly and effectively. The proposed controller is operated under uncertainty and in a fuzzy environment. It show the congestion of road traffic by using fuzzy logic, and it determines the length of green signal by means of a fuzzy inference engine. It modeled using petri-net to verify its validation.

  • PDF

Development of the Traffic Signal Control Strategy and Signal Controller for Tram (트램 운영을 위한 신호제어 전략 및 신호제어기의 개발)

  • Lee, In-Kyu;Kim, Youngchan;Lee, Joo Il;Oh, Seung Hwoon
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.70-80
    • /
    • 2015
  • In recent years, tram has been the focus of a new mode of public transportation that can solve traffic jams and decrease public transit usage and environmental problem. This research is in the works to develop a tram signal controller and signal control strategies, and aim to resolve the problem of what could happen if a tram system was installed in general road. We developed the hierarchical signal control strategies to obtain a minimum tram bandwidth and to minimize vehicle delay, in order to perform a priority control to include passive and active signal priority control strategies. The strategies was produced for S/W and H/W, it is based in standard traffic signal controller. We conducted a micro simulation test to evaluate the hierarchical signal control strategies, which showed that the developed optimization model is effective to prevent a tram's stop in intersection, to reduce a tram's travel time and vehicle's delay.

A Study on a Validity of Traffic Signal Control using Fuzzy Analytic Hierarchy Process (퍼지AHP를 이용한 교통신호제어 적합성에 관한 연구)

  • Jin Hyun-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.479-484
    • /
    • 2006
  • This paper discusses a fitness of the control on intersection using fuzzy analytic hierachy process. The validity of control of traffic signal on intersection is the fitness of phase and cycle on the intersection. The validity of the controller is cleared by the comparison of the delay time of vehicle. Fuzzy analytic hierachy process clears the grade of validity of the fixed cycle time controller and adaptive fixed cycle time and fuzzy trafic controller and proposes a new control type a traffic signal by this fuzzy analytic hierachy process.

An approach for Traffic Signal Control using RFID in the u-City (u-City에서 RFID를 이용 교통신호제어에 관한 연구)

  • Seo, Gang-Do;Cho, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.26-36
    • /
    • 2008
  • This study proposed a traffic responsive urban traffic control system using RFID(Radio Frequency Identification) technology to get traffic information. The proposed system is a decentralized control using model predictive control. The objective of proposed system is to get traffic data using advanced technology for controlling the junctions' traffic rights. A simulation example is provided to demonstrate the applicability of the proposed model.

An Experimental Study on the Application of NTCIP to Korean Traffic Signal Control System (교통신호제어시스템 NTCIP 통신규약 적용성 실험 연구)

  • Go, Gwang-Yong;Jeong, Jun-Ha;Lee, Seung-Hwan;An, Gye-Hyeong
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.19-33
    • /
    • 2006
  • This paper presents the results of an experimental study on the application of NTCIP protocol to Korean traffic signal control system. For this study the communication Protocol of the existing traffic signal control system was adjusted to meet NTCIP standard. Management information base for Korea real-time traffic signal control system, message library of OER, traffic control center management software supporting SNMP/SFMP Protocol, and agent softwares for local controllers were developed during the experimental study. The applicability test of the adjusted system by NTCIP standard was performed. Fifty eight Percent of communication packets were lost at 2.400bps communication speed, which made the operation impossible. The experimentations with communication speeds 4,800bps and 9,600bps did not cause problems. In conclusion, to apply the NTCIP standard to domestic real-time traffic control system, communication environments need to be upgraded to 4,800bps or higher.

An Analysis of Effectiveness for Permissive Warrants on the Restrictive Left-Turn Signal Control in Urban Arterial Roads (도시 간선도로에서 제한적 좌회전 신호운영의 적용기준 및 효과분석에 관한 연구)

  • Jeong, In-Taek;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • There are many limitations in dealing with rapidly changing traffic demand in urban cities. Thus recently, traffic operation and management skills are more emphasized rather than the expansion of traffic facilities. In particular, in the interrupted flow formed by signalized intersections, it is quite important to give optimal signal timing to each intersection with consideration of progression. However, as fixed signal times per direction can affect passing capacity in signalized intersections, the present four-signal phase including a left-turn signal has many limitations, including reduction of directional road capacity when traffic demand is increases dramatically during peak hours. Because of this problem, lots of studies about internal metering techniques for oversaturated signal control skills have progressed but these techniques are not used widely due to the absence of detectors for queue sensing in real-time signal control systems. In this research, a new methodology called the "restrictive left-turn signal control", which is already used at the intersection above Samsung subway station, is suggested in order to reduce control delay of urban arterial roads. The restrictive left-turn signal control allows a driver to make a U-turn and then a right turn instead of turning left in that intersection. With this change, the restrictive left-turn signal control can contribute to increased intersection capacity by reducing the number of signal phases and maximizing the through phase time. However, road structure and traffic conditions at the target intersections should be considered before the adoption of the proposed signal control.

An Analysis on Signal Control Efficiency in a Three-Leg Intersection Adopting Pedestrian Push-Button System Following Pedestrian volume (3지 교차로에서 보행자 교통량에 따른 보행자작동신호기를 이용한 신호제어효율에 관한 분석)

  • Kim, Eung-Cheol;Cho, Han-Seon;Jung, Dong-Woo;Kim, Hyoung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • This study has proposed the signal operating system to use both semi-actuated signal control and pedestrian push-button as a way to make up for the problems of 3 leg intersections which are operated inefficiently in the signal operation, one of the methods of traffic operations. In case of the semi-actuated signal control, it can reduce delay inside the intersection by serving to uncongested traffic on the main road where there is not much traffic volume on the secondary road and push-button signal can reduce unnecessary waiting time it could happen to vehicles by operating it though there is no pedestrian. Quantitative analysis was tried regarding the average delay reduction per vehicle using VISSIM, microscopic simulation program regarding how much effect it has compared with the existing signal control system and semi-actuated signal control system when the above two advantages are collected. The field test was performed for one three-leg intersection of Incheon. According to respectively signal control method pedestrian traffic changed and executed a sensitivity analysis. The result which compares the average delay time per a vehicle of scenarios, the signal control method of using the pedestrian push-button system in comparison with the fixed signal control method showed to decrease effect of a minimum 3.7 second (10%), a maximum 5.8 second (16%). When the pedestrian traffic volume was 20% or less of the measurement traffic volume, The signal control method of using the pedestrian push-button system appeared to be more efficient the semi-actuated signal control with object intersection.

  • PDF