• Title/Summary/Keyword: 교통사고 심각도

Search Result 216, Processing Time 0.023 seconds

Analysis of the Impact Factors of Peak and Non-peak Time Accident Severity Using XGBoost (XGBoost를 활용한 첨두, 비첨두시간 사고 심각도 영향요인 분석)

  • Je Min Seong;Byoung Jo Yoon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.440-447
    • /
    • 2024
  • Purpose: The number of registered vehicles in Korea continues to increase. As traffic volume increases gradually due to improved quality of life, the severity of accidents is expected to increase and congestion problems are also expected. Therefore, it is necessary to analyze the accident factors of pointed traffic accidents and non-pointed traffic accidents. Method: The severity of the apical and non-pointed traffic accidents in Incheon Metropolitan City is analyzed by dividing them into apical and non-pointed traffic accidents to investigate the factors affecting the accident. XGBoost machine learning techniques were applied to analyze the severity of pointed and non-pointed traffic accidents and visualized as plot through the results. Result: It was analyzed that during non-peak hours, such as the case of the victim's vehicle type at peak times, the victim's vehicle type and construction machinery are variables that increase the severity of the accident. Conclusion: It is meaningful to derive the seriousness factors of apical and non-pointed accidents, and it is hoped that it will be used to reduce congestion costs by reducing the seriousness of accidents in the case of apical and non-pointed in the future.

A Study on the Application of Accident Severity Prediction Model (교통사고 심각도 예측 모형의 활용방안에 관한 연구 (서해안 고속도로를 중심으로))

  • Won, Min-Su;Lee, Gyeo-Ra;O, Cheol;Gang, Gyeong-U
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2009
  • It is important to study on the traffic accident severity reduction because traffic accident is an issue that is directly related to human life. Therefore, this research developed countermeasure to reduce traffic accident severity considering various factors that affect the accident severity. This research developed the Accident Severity Prediction Model using the collected accident data from Seohaean Expressway in 2004~2006. Through this model, we can find the influence factors and methodology to reduce accident severity. The results show that speed limit violation, vehicle defects, vehicle to vehicle accident, vehicle to person accident, traffic volume, curve radius CV(Coefficient of variation) and vertical slope CV were selected to compose the accident severity model. These are certain causes of the severe accident. The accidents by these certain causes present specific sections of Seohaean Expressway. The results indicate that we can prevent severe accidents by providing selected traffic information and facilities to drivers at specific sections of the Expressway.

Classifying the severity of pedestrian accidents using ensemble machine learning algorithms: A case study of Daejeon City (앙상블 학습기법을 활용한 보행자 교통사고 심각도 분류: 대전시 사례를 중심으로)

  • Kang, Heungsik;Noh, Myounggyu
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.39-46
    • /
    • 2022
  • As the link between traffic accidents and social and economic losses has been confirmed, there is a growing interest in developing safety policies based on crash data and a need for countermeasures to reduce severe crash outcomes such as severe injuries and fatalities. In this study, we select Daejeon city where the relative proportion of fatal crashes is high, as a case study region and focus on the severity of pedestrian crashes. After a series of data manipulation process, we run machine learning algorithms for the optimal model selection and variable identification. Of nine algorithms applied, AdaBoost and Random Forest (ensemble based ones) outperform others in terms of performance metrics. Based on the results, we identify major influential factors (i.e., the age of pedestrian as 70s or 20s, pedestrian crossing) on pedestrian crashes in Daejeon, and suggest them as measures for reducing severe outcomes.

A Study to Predict the Traffic Accident Severity Level Applying Neural Network at the Signalized Intersections (인공신경망을 적용한 신호교차로 교통사고심각도 예측에 관한 연구)

  • Choi, Jae-Won;Kim, Seong-Ho;Cho, Jun-Han;Kim, Won-Chul
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.127-135
    • /
    • 2004
  • 교차로 안전성 진단과 관련된 기존의 연구는 교차로 상에서 발생한 사고 자료에 기초하여 교차로 기하구조 요소, 교통량 및 신호운영방법 등과 관련된 요인을 변수로 사용하여 교통사고건수 예측모형 개발에 관한 연구가 대부분이다. 그러나, 분석하고자 하는 대상 교차로의 사고건수 예측모형을 개발하기 위해 필요한 교통사고 자료의 경우 단 기일에 걸쳐 획득되지 않으며 몇 년간의 사고 자료를 요구할 수도 있다. 이러한 자료를 이용하더라도 사고 발생 기간동안 교차로 사고에 영향을 미치는 요인(교차로 운영방법, 기하구조 등)이 변화될 수도 있다는 문제점을 지닌다. 이와 같은 이유로 교차로 안전성을 진단하는데 있어 기존 교통사고 자료는 언제나 절대적인 자료가 될 수 없다. 이에 대한 보완책으로, 3일에서 5일정도의 조사 자료만으로도 안전성 진단이 가능한 상충자료를 이용하여 교차로 안전성 진단을 할 수 있다. 본 연구는 기존사고 자료를 이용하여 사고 발생에 기인하는 여러 변수들을 교통사고심각도와의 상관관계를 분석하고, 상관관계가 높은 변수를 이용하여 신경망 사고심각도 예측모형을 개발하였으며, 모형 검증을 위해 다중회귀사고심각도 예측모형을 개발하여 비교 평가한 결과 신경망 사고심각도 예측모형의 예측력이 우수한 것으로 나타났다. 현장에서 조사된 상충자료를 신경망 사고심각도 예측모형에 적용하여 상충이 사고로 연결 될 경우 사고심각도를 예측하였으며, 예측된 사고심각도에 가중치를 부여하여 대상 교차로 위험우선순위를 결정한 결과 사고비용에 기초한 위험우선순위 결정법과 같은 순위의 결과를 도출하였다.

Comparative Analysis of Traffic Accident Severity of Two-Wheeled Vehicles Using XGBoost (XGBoost를 활용한 이륜자동차 교통사고 심각도 비교분석)

  • Kwon, Cheol woo;Chang, Hyun ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • Emergence of the COVID 19 pandemic has resulted in a sharp increase in the number of two-wheeler vehicular traffic accidents, prompting the introduction of numerous efforts for their prevention. This study applied XGBoost to determine the factors that affect severity of two-wheeled vehicular traffic accidents, by examining data collected over the past 10 years and analyzing the influence of each factor. Among the total factors assessed, variables affecting the severity of traffic accidents were overwhelmingly high in cases of signal violations, followed by the age group of drivers (60s or older), factors pertaining only to the car, and cases of centerline infringement. Based on the research results, a reasonable legal reform plan was proposed to prevent serious traffic accidents and strengthen safety management of two-wheeled vehicles. Based on the research results, we propose a reasonable legal reform plan to prevent serious traffic accidents and strengthen safety management of two-wheeled vehicles.

Analysis of Traffic Crash Severity on Freeway Using Hierarchical Binomial Logistic Model (계층 이항 로지스틱모형에 의한 고속도로 교통사고 심각도 분석)

  • Mun, Sung-Ra;Lee, Young-Ihn
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.199-209
    • /
    • 2011
  • In the study of traffic safety, the analysis on factors affecting crash severity and the understanding about their relationship is important to be planning and execute to improve safety of road and traffic facilities. The purpose of this study is to develop a hierarchical binomial logistic model to identify the significant factors affecting fatal injuries and vehicle damages of traffic crashes on freeway. Two models on death and total vehicle damage are developed. The hierarchical structure of response variable is composed of two level, crash-occupant and crash-vehicle. As a result, we have gotten the crash-level random effect from these hierarchical structure as well as the fixed effect of covariates, namely odds ratio. The crash on the main line and in-out section have greater damage than other facilities. Injuries and vehicle damages are severe in case of traffic violations, centerline invasion and speeding. Also, collision crash and fire occurrence is more severe damaged than other crash types. The surrounding environment of surface conditions by climate and visibility conditions by day and night is a significant factor on crash occurrence. On the orher hand, the geometric condition of road isn't.

Studying the Comparative Analysis of Highway Traffic Accident Severity Using the Random Forest Method. (Random Forest를 활용한 고속도로 교통사고 심각도 비교분석에 관한 연구)

  • Sun-min Lee;Byoung-Jo Yoon;WutYeeLwin
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.156-168
    • /
    • 2024
  • Purpose: The trend of highway traffic accidents shows a repeating pattern of increase and decrease, with the fatality rate being highest on highways among all road types. Therefore, there is a need to establish improvement measures that reflect the situation within the country. Method: We conducted accident severity analysis using Random Forest on data from accidents occurring on 10 specific routes with high accident rates among national highways from 2019 to 2021. Factors influencing accident severity were identified. Result: The analysis, conducted using the SHAP package to determine the top 10 variable importance, revealed that among highway traffic accidents, the variables with a significant impact on accident severity are the age of the perpetrator being between 20 and less than 39 years, the time period being daytime (06:00-18:00), occurrence on weekends (Sat-Sun), seasons being summer and winter, violation of traffic regulations (failure to comply with safe driving), road type being a tunnel, geometric structure having a high number of lanes and a high speed limit. We identified a total of 10 independent variables that showed a positive correlation with highway traffic accident severity. Conclusion: As accidents on highways occur due to the complex interaction of various factors, predicting accidents poses significant challenges. However, utilizing the results obtained from this study, there is a need for in-depth analysis of the factors influencing the severity of highway traffic accidents. Efforts should be made to establish efficient and rational response measures based on the findings of this research.

Analysis of Traffic Accidents Injury Severity in Seoul using Decision Trees and Spatiotemporal Data Visualization (의사결정나무와 시공간 시각화를 통한 서울시 교통사고 심각도 요인 분석)

  • Kang, Youngok;Son, Serin;Cho, Nahye
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.233-254
    • /
    • 2017
  • The purpose of this study is to analyze the main factors influencing the severity of traffic accidents and to visualize spatiotemporal characteristics of traffic accidents in Seoul. To do this, we collected the traffic accident data that occurred in Seoul for four years from 2012 to 2015, and classified as slight, serious, and death traffic accidents according to the severity of traffic accidents. The analysis of spatiotemporal characteristics of traffic accidents was performed by kernel density analysis, hotspot analysis, space time cube analysis, and Emerging HotSpot Analysis. The factors affecting the severity of traffic accidents were analyzed using decision tree model. The results show that traffic accidents in Seoul are more frequent in suburbs than in central areas. Especially, traffic accidents concentrated in some commercial and entertainment areas in Seocho and Gangnam, and the traffic accidents were more and more intense over time. In the case of death traffic accidents, there were statistically significant hotspot areas in Yeongdeungpo-gu, Guro-gu, Jongno-gu, Jung-gu and Seongbuk. However, hotspots of death traffic accidents by time zone resulted in different patterns. In terms of traffic accident severity, the type of accident is the most important factor. The type of the road, the type of the vehicle, the time of the traffic accident, and the type of the violation of the regulations were ranked in order of importance. Regarding decision rules that cause serious traffic accidents, in case of van or truck, there is a high probability that a serious traffic accident will occur at a place where the width of the road is wide and the vehicle speed is high. In case of bicycle, car, motorcycle or the others there is a high probability that a serious traffic accident will occur under the same circumstances in the dawn time.

A Study on the Crash Severity of Expressway Work Zones Using Decision Tree (의사결정나무를 이용한 고속도로 공사구간 사고 심각도에 관한 연구)

  • PARK, Yong Woo;BACK, Sehum;PARK, Shin Hyoung;KWON, Oh Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.6
    • /
    • pp.535-547
    • /
    • 2016
  • This study aims to identify factors that affect the degree of injury severity sustained in traffic crashes on work zone of Korean expressways. To this end, decision tree method was applied to identify influential factors on injury severity and compare characteristics of those factors between work zone and non-work zone. The results from the comparison show that the risk of severity was low when traffic volume and heavy vehicle ratio are high because the factors lower the overall section speed. On the other hand, when the traffic volume and the heavy vehicle ratio are low, the section speed increased and the tendency for high injury severity was confirmed. These findings are expected to help transportation planners and engineers understand which risk factors contribute more to severe injury in the work zones such that they can effectively prepare and implement safety countermeasures.

Pattern Analysis of Traffic Accident data and Prediction of Victim Injury Severity Using Hybrid Model (교통사고 데이터의 패턴 분석과 Hybrid Model을 이용한 피해자 상해 심각도 예측)

  • Ju, Yeong Ji;Hong, Taek Eun;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.75-82
    • /
    • 2016
  • Although Korea's economic and domestic automobile market through the change of road environment are growth, the traffic accident rate has also increased, and the casualties is at a serious level. For this reason, the government is establishing and promoting policies to open traffic accident data and solve problems. In this paper, describe the method of predicting traffic accidents by eliminating the class imbalance using the traffic accident data and constructing the Hybrid Model. Using the original traffic accident data and the sampled data as learning data which use FP-Growth algorithm it learn patterns associated with traffic accident injury severity. Accordingly, In this paper purpose a method for predicting the severity of a victim of a traffic accident by analyzing the association patterns of two learning data, we can extract the same related patterns, when a decision tree and multinomial logistic regression analysis are performed, a hybrid model is constructed by assigning weights to related attributes.