• Title/Summary/Keyword: 교통사고 데이터

Search Result 359, Processing Time 0.023 seconds

Development of Incident Detection Algorithm using GPS Data (GPS 정보를 활용한 돌발상황 검지 알고리즘 개발)

  • Kong, Yong-Hyuk;Kim, Hey-Jin;Yi, Yong-Ju;Kang, Sin-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.771-782
    • /
    • 2021
  • Regular or irregular situations such as traffic accidents, damage to road facilities, maintenance or repair work, and vehicle breakdowns occur frequently on highways. It is required to provide traffic services to drivers by promptly recognizing these regular or irregular situations, various techniques have been developed for rapidly collecting data and detecting abnormal traffic conditions to solve the problem. We propose a method that can be used for verification and demonstration of unexpected situation algorithms by establishing a system and developing algorithms for detecting unexpected situations on highways. For the detection of emergencies on expressways, a system was established by defining the expressway contingency and algorithm development, and a test bed was operated to suggest a method that can be used for verification and demonstration of contingency algorithms. In this study, a system was established by defining the unexpected situation and developing an algorithm to detect the unexpected situation on the highway, and a method that can be used verifying and demonstrating unexpected situations. It is expected to secure golden time for the injured by reducing the effectiveness of secondary accidents. Also predictable accidents can be reduced in case of unexpected situations and the detection time of unpredictable accidents.

차세대 지능형 교통 시스템의 요소 기술 연구 동향

  • Song, Seok-Il;Lee, Jae-Seong;Go, Gyun-Byeong;Mun, Cheol
    • Information and Communications Magazine
    • /
    • v.30 no.10
    • /
    • pp.18-24
    • /
    • 2013
  • 협력 지능형 교통 시스템 (C-ITS: Cooperative Intelligent Transportation System)은 차량이 도로 인프라 또는 다른 차량과 서로 통신하면서 전방의 교통사고 및 장애물과 주변 차량 정보를 공유하여 위험상황을 피할 수 있도록 사전에 경고하는 미래형 교통체계이다. C-ITS는 보행자 및 차량의 안전을 향상시키고 배출탄소량 감소 및 교통물류의 효율성을 증가시킬 수 있는 미래사회의 핵심 인프라가 될 전망이다. C-ITS의 성공적인 실현을 위해서는 다중 센서 융 복합 기반 교통정보 수집, 교통정보를 쌍방향으로 유통하기 위한 통합 무선 통신망, 스마트 기기와 이동통신망을 활용한 실시간 교통정보 수집 및 빅 데이터 처리와 주문형 서비스 제공 등의 핵심 기술 개발이 필요하다. 본 고에서는 협력형 교통 환경에서의 C-ITS 구조 및 관련 핵심 요소 기술을 소개하고, 앞으로 해결할 과제를 소개 한다.

Yolo based Light Source Object Detection for Traffic Image Big Data Processing (교통 영상 빅데이터 처리를 위한 Yolo 기반 광원 객체 탐지)

  • Kang, Ji-Soo;Shim, Se-Eun;Jo, Sun-Moon;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.40-46
    • /
    • 2020
  • As interest in traffic safety increases, research on autonomous driving, which reduces the incidence of traffic accidents, is increased. Object recognition and detection are essential for autonomous driving. Therefore, research on object recognition and detection through traffic image big data is being actively conducted to determine the road conditions. However, because most existing studies use only daytime data, it is difficult to recognize objects on night roads. Particularly, in the case of a light source object, it is difficult to use the features of the daytime as it is due to light smudging and whitening. Therefore, this study proposes Yolo based light source object detection for traffic image big data processing. The proposed method performs image processing by applying color model transitions to night traffic image. The object group is determined by extracting the characteristics of the object through image processing. It is possible to increase the recognition rate of light source object detection on a night road through a deep learning model using candidate group data.

Analysis of Bus Drivers' Working Environment and Accidents by Route-Bus Categories : Using Digital TachoGraph Data (노선버스 운송업종별 운전자의 근로여건 및 사고 분석 : DTG 데이터를 활용하여)

  • Kwon, Yeongmin;Yeo, Jiho;Byun, Jihye
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2019
  • The accident of mass transit such as a bus could draw the large casualties and this induces social and economic losses. Recently, severe bus accidents caused by tiredness and inattention of bus drivers occurred and those lead to growing interest in bus accidents and the drivers' work environment. Therefore, this study analyzes the accident based on the work environment of bus drivers and route-bus categories. For the research, this study collected digital tachograph data and the bus company information for 271 domestic bus companies in 2017 and used ANOVA test and chi-square test as statistical methodologies. As a result, we figured out there are statistically significant differences in the accident according to the working environments. Especially, the present study confirmed the intracity bus with working every other day has the most frequent accidents. We expect that the results of this study be used as foundations for the improvement of working conditions to reduce route-bus accidents in the future.

Analysis of Highway Hazardous Area by Sun Glare Intensity Using GIS Simulation (GIS Simulation을 이용한 태양광에 의한 교통사고 위험지역 분석)

  • Kim, Ho-Yong;Baik, Ho-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.91-100
    • /
    • 2010
  • Existing traffic safety studies have focused on identifying the relationship among roadway crashes, highway design and incremental weather condition such as rainy/ice weather. However, it is hard to find researches that studied the effect of sun glare on traffic safety although there are abundant evidences demonstrating that fatal traffic crashes are attributed to the sun glare. Affecting drivers'vision particularly during the morning or the evening time when the sun positions close to the horizon, sun glare directly deteriorate drivers'judgmental capability. In this paper, we numerically analyze the effect of sun glare on the drivers'vision in time and space domains. Applied to the roadways around St Louis area in the United States, the GIS based simulation analysis identifies the time of day in a year and the segments of highways that are potentially influenced by the sun glare. This study evidentially confirms the fact that roadway bounded for West and East directions have longer time influenced by sun glare particularly during Spring and Fall season than other roadways. The computational result provides risky time periods of day at intersections or pedestrian crossings where the sun glare potentially endangers traffic safety, which be utilized to reduce the crashes due to the sun glare.

An Exploratory Study on ChatGPT's Performance to Answer to Police-related Traffic Laws: Using the Driver's License Test and the Road Traffic Accident Appraiser (ChatGPT의 경찰 관련 교통법규 응답 능력에 대한 탐색적 연구 - 운전면허 학과시험과 도로교통사고감정사 1차 시험을 대상으로 -)

  • Sang-yub Lee
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study conducted preliminary study to identify effective ways to use ChatGPT in traffic policing by analyzing ChatGPT's responses to the driver's license test and the road traffic accident appraiser test. I collected ChatGPT responses for the driver's license test item pool and the road traffic accident appraiser test using the OpenAI API with Python code for 30 iterative experiments, and analyzed the percentage of correct answers by test, year, section, and consistency. First, the average correct answer rate for the driver's license test and the for road traffic accident appraisers test was 44.60% and 35.45%, respectively, which was lower than the pass criteria, and the correct answer rate after 2022 was lower than the average correct answer rate. Second, the percentage of correct answers by section ranged from 29.69% to 56.80%, showing a significant difference. Third, it consistently produced the same response more than 95% of the time when the answer was correct. To effectively utilize ChatGPT, it is necessary to have user expertise, evaluation data and analysis methods, design a quality traffic law corpus and periodic learning.

Precision Measurement of Vehicle Shape using Industrial Photogrammetry (산업 사진측량에 의한 자동차의 외형 정밀 측정)

  • 정성혁;박찬홍;이재기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2004
  • This study describes that the method of precision measurement of vehicle shape and the method of measurement the deformation that it is occurred the reason of accident using industrial photogrammatry. The curved shape is measured using the projection target which is able to acquire the point cloud data. 3D coordinates of the target were able to acquire through object picturing and analysis of coordinates. The acquired point cloud data was done 3D modeling to form the surface with TIN. Also, It able to interpretate a deformation surveying accurately the occurred parts of deformation, then can furnish to the analysis of traffic accident the precise and effective data.

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

Computer Vision-Based Car Accident Detection using YOLOv8 (YOLO v8을 활용한 컴퓨터 비전 기반 교통사고 탐지)

  • Marwa Chacha Andrea;Choong Kwon Lee;Yang Sok Kim;Mi Jin Noh;Sang Il Moon;Jae Ho Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.91-105
    • /
    • 2024
  • Car accidents occur as a result of collisions between vehicles, leading to both vehicle damage and personal and material losses. This study developed a vehicle accident detection model based on 2,550 image frames extracted from car accident videos uploaded to YouTube, captured by CCTV. To preprocess the data, bounding boxes were annotated using roboflow.com, and the dataset was augmented by flipping images at various angles. The You Only Look Once version 8 (YOLOv8) model was employed for training, achieving an average accuracy of 0.954 in accident detection. The proposed model holds practical significance by facilitating prompt alarm transmission in emergency situations. Furthermore, it contributes to the research on developing an effective and efficient mechanism for vehicle accident detection, which can be utilized on devices like smartphones. Future research aims to refine the detection capabilities by integrating additional data including sound.

Sharing Black Box Information in VANET for Vehicle Accidents Simulation (차량사고 시뮬레이션을 위한 VANET 기반의 블랙박스 정보공유)

  • Kim, Nam-Jung;Yu, Ji-Eun;Lee, Won-Jun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.285-287
    • /
    • 2012
  • 근래 정부에서는 차량용 블랙박스의 필요성과 효율성을 인식해 모든 차량에 블랙박스(EDR, Event Data Recorder)를 의무적으로 장착하게 하고, 이를 통해 차량의 운행 정보와 상황을 모니터 및 관리를 할 수 있도록 정부 시책을 신설하고 이를 추진하고 있는 중이다. 특히 차량사고 발생시 이를 시뮬레이션하고 분석할 수 있는 자료가 매우 부족하다. 교통사고의 시뮬레이션 사고 차량의 운행정보뿐만 아니라 주변 운행환경 및 운행여건, 다른 차량의 간섭 등 매우 많은 정보가 필요하기 때문이다. 이에 본 논문에서는 블랙박스 간 Ad-hoc network을 이용해 차량의 정보를 공유 할 수 있는 시스템을 제안하고자 한다. 즉, 차량에서 돌발상황이 발생했을 때 발생 차량의 블랙박스 의 정보와 주변 운행하고 있는 차량에 장착되어 있는 블랙박스의 정보를 Ad-hoc network를 통해 사고 발생차량으로 수집, 이를 저장하고 추후사고에 대한 시뮬레이션 에서 이 데이터들을 통해 돌발상황 당시의 주변 차량 흐름과 다른 차량간의 간섭 및 돌발상황 유발 같은 현상을 조금 더 정확하게 시뮬레이션 함으로서 돌발상황에 대한 분석 및 판단에 도움을 줄 것이라 생각한다.