• Title/Summary/Keyword: 교통사고예측모델

Search Result 70, Processing Time 0.022 seconds

딥러닝을 이용한 VTS 주의구역 선박교통류 예측 모델(STENet) 개발

  • Kim, Gwang-Il;Kim, Ju-Seong;Jeong, Cho-Yeong;Lee, Geon-Myeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.275-277
    • /
    • 2018
  • 선박 및 해상교통관제에 있어서 교통 혼잡구역에 대한 선박교통밀도 예측은 선박충돌사고 예방에 중요하다. 선박 교통밀도 예측정보는 사전에 진입하는 선박들에게 속력조정, 우회항로 이용 등 사전 조치가 가능하다. 본 연구에서는 해상 선박교통상황을 딥러닝 네트워크에 학습한 주의구역 선박교통류 예측 모델(Ship Traffic Extraction Network, STENet)을 제안하여 주의구역의 선박교통류 예측을 수행하고자 한다. STENet 모델 학습을 위해 여수해역 AIS 데이터를 전처리하고, 생성된 입력(해상교통상황)-출력(주의구역 교통밀도) 쌍 데이터를 적용하여 STENet 모델을 학습하였다. 학습된 모델을 이용하여 선박교통류 예측을 한 결과, 중기예측은 표준 절대 오차(mean absolute error)가 0.4-0.5척이 였으며, 장기예측은 0.7-0.8척의 오차로 기존의 Dead Reckoning에 의한 방법보다 50% 이상 교통밀도 예측성능이 향상 되었다.

  • PDF

Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory (퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구)

  • Kim, Jang-Uk;Nam, Gung-Mun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.81-90
    • /
    • 2006
  • It is important to clarify the relationship between traffic accidents and various influencing factors in order to reduce the number of traffic accidents. This study developed a traffic accident frequency prediction model using by multi-linear regression and qualification theories which are commonly applied in the field of traffic safety to verify the influences of various factors into the traffic accident frequency The data were collected on the Korean National Highway 17 which shows the highest accident frequencies and fatality rates in Chonbuk province. In order to minimize the uncertainty of the data, the fuzzy theory and neural network theory were applied. The neural network theory can provide fair learning performance by modeling the human neural system mathematically. Tn conclusion, this study focused on the practicability of the fuzzy reasoning theory and the neural network theory for traffic safety analysis.

Analysis and Prediction Methods of Marine Accident Patterns related to Vessel Traffic using Long Short-Term Memory Networks (장단기 기억 신경망을 활용한 선박교통 해양사고 패턴 분석 및 예측)

  • Jang, Da-Un;Kim, Joo-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.780-790
    • /
    • 2022
  • Quantitative risk levels must be presented by analyzing the causes and consequences of accidents and predicting the occurrence patterns of the accidents. For the analysis of marine accidents related to vessel traffic, research on the traffic such as collision risk analysis and navigational path finding has been mainly conducted. The analysis of the occurrence pattern of marine accidents has been presented according to the traditional statistical analysis. This study intends to present a marine accident prediction model using the statistics on marine accidents related to vessel traffic. Statistical data from 1998 to 2021, which can be accumulated by month and hourly data among the Korean domestic marine accidents, were converted into structured time series data. The predictive model was built using a long short-term memory network, which is a representative artificial intelligence model. As a result of verifying the performance of the proposed model through the validation data, the RMSEs were noted to be 52.5471 and 126.5893 in the initial neural network model, and as a result of the updated model with observed datasets, the RMSEs were improved to 31.3680 and 36.3967, respectively. Based on the proposed model, the occurrence pattern of marine accidents could be predicted by learning the features of various marine accidents. In further research, a quantitative presentation of the risk of marine accidents and the development of region-based hazard maps are required.

Forecasting of Traffic Accident Occurrence Pattern Using LSTM (LSTM을 이용한 교통사고 발생 패턴 예측)

  • Roh, You Jin;Bae, Sang Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.59-73
    • /
    • 2021
  • There are many lives lost due traffic accidents, and which have not decreased despite advances in technology. In order to prevent traffic accidents, it is necessary to accurately forecast how they will change in the future. Until now, traffic accident-frequency forecasting has not been a major research field, but has been analyzed microscopically by traditional methods, mainly based on statistics over a previous period of time. Despite the recent introduction of AI to the traffic accident field, the focus is mainly on forecasting traffic flow. This study converts into time series data the records from 1,339,587 traffic accidents that occurred in Korea from 2014 to 2019, and uses the AI algorithm to forecast the frequency of traffic accidents based on driver's age and time of day. In addition, the forecast values and the actual values were compared and verified based on changes in the traffic environment due to COVID-19. In the future, these research results are expected to lead to improvements in policies that prevent traffic accidents.

A Study on Discriminant.Classification Model of Impact Factors about Understanding of Traffic Accident Causes and Acknowledgement to Decrease Traffic Accidents (교통사고 발생원인 인식과 감소대책 인지 영향요인 판별.분류에 관한 연구)

  • 고상선;배기목;이원규;정헌영
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.143-153
    • /
    • 2002
  • 본 연구는 교통사고의 발생원인에 대한 인식유형과 감소대책에 대한 인지 유형별 영향요인의 정도를 분석하기 위하여 수량화이론 II류와 CHAID 분석법을 이용하여 분류모델과 판별모델을 구축하였다. 수량화이론 II류에 의한 교통사고 발생원인에 대한 인식 유형별 영향요인 판별모델은 전체 적중률이 78.4%로 매우 높게 나타났다. 편상관계수는 설명변수의 항목 중 학력, 성별, 운전경력 년 수, 소유 차종의 순으로 영향을 미치고 외적 변수인 교통사고 발생원인에 대한 유형에서는 기여 정도가 교통단속 부재 > 교통체계 미비 > 승용차 과다 사용 >잘못된 의식 때문의 순으로 나타났다. 교통사고 감소 대책에 대한 인지유형별 영향요인 판별모델은 전체 적중률이 59.9%로 높게 나타났으며, 편상관 계수는 학력, 성별, 운전경력 연수, 연령의 순으로 영향을 미치고 있고, 외적 변수인 교통사고 감소 대책에 대한 유형에서는 기여 정도가 교통단속 강화 > 대중교통수단 이용 유도 > 교통체계 개선 > 의식 개혁의 순으로 나타났다. 또한 CHAID 분석법에 의한 교통사고 발생원인에 대한 인식 유형별 영향요인 분류모델에 있어서는 예측변수로 학력, 연령, 성별, 통행수단의 네 가지 변수가, 교통사고의 감소 대책에 대한인지 유형별 영향요인 분류모델에 있어서는 학력, 운전경력 연수, 성별 그리고 통행수단의 네 가지 변수가 카이제곱 통계량 이 5%의 유의수준에서 유의한 것으로 판단되었다. 교통사고 발생원인 인식과 감소 대책의 인지 유형에 대한 빈도분석과 교차분석은 의식과 관련한 유형이 가장 높게 나타났으나 판별.분류모델에서는 교통단속과 관련한 유형이 기여 정도가 높고 의식 관련 유형이 상대적으로 낮게 나타나는 등 반대양상을 보이고 있어 심리적으로 내재되어 있고 표면에 잘 드러나지 않았던 의식 수준의 낮음이 분류모델을 통해서 명확하게 드러났다.

Development of Evaluation Model for Black Spot Improvement Priorities by using Emperical Bayes Method (EB기법을 이용한 사고잦은 곳 개선사업 우선순위 판정기법 개발)

  • Jeong, Seong-Bong;Hwang, Bo-Hui;Seong, Nak-Mun;Lee, Seon-Ha
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.81-90
    • /
    • 2009
  • The safety management of a road network comprises four basic inter-related components:identification of sites(black spot) requiring safety investigation, diagnosis of safety problems, selection of feasible treatments for potential treatment candidates, and prioritization of treatments given limited budgets(Persaud, 2001). Identification process of selecting black spot is very important for efficient investigation of sites. In this study, the accident prediction model for EB method was developed by using accident data and geometric conditions of black spots selected from four-leg signalized intersections in In-cheon City for three years (2004-2006). In addition, by comparing the rank nomination technique using EB method to that by using accident counts, we managed to show the problems which the existing method have and the necessity for developing rational prediction model. As a result, in terms of total number of accidents, both the counts predicted by existing non-linear regression model and that by EB method have high good of fitness, but EB method, considering both the accident counts by sites and total number of accident, has better good of fitness than non-linear poison model. According to the result of the comparison of ranks nominated for treatment between two methods, the rank for treatment of almost sites does not change but SeoHae intersection and a few other intersections have significant changes in their rank. This shows that, with the technique proposed in the study, the RTM problem caused by using real accident counts can be overcome.

A Study on the Prediction of Traffic Accidents Using Artificial Intelligence (인공지능을 활용한 교통사고 발생 예측에 대한 연구)

  • Kim, Ga-eul;Kim, Jeong-hyeon;Son, Hye-ji;Kim, Dohyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.389-391
    • /
    • 2021
  • Traffic regulations are expanding to prevent traffic accidents for people's safety, but traffic accidents are not decreasing. In this study, the probability of traffic accidents occurring at a specific time and place is estimated by analyzing various factors such as weather forecast data from the Meteorological Agency, day of the week, time of day, location data, and location information. This study combines objective data on the occurrence of numerous previous traffic accidents with various additional elements not considered in previous studies to derive a more improved traffic accident probability prediction model. The results of this study can be effectively used for various transportation-related services for the safety of people.

  • PDF

Predicting of the Severity of Car Traffic Accidents on a Highway Using Light Gradient Boosting Model (LightGBM 알고리즘을 활용한 고속도로 교통사고심각도 예측모델 구축)

  • Lee, Hyun-Mi;Jeon, Gyo-Seok;Jang, Jeong-Ah
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1123-1130
    • /
    • 2020
  • This study aims to classify the severity in car crashes using five classification learning models. The dataset used in this study contains 21,013 vehicle crashes, obtained from Korea Expressway Corporation, between the year of 2015-2017 and the LightGBM(Light Gradient Boosting Model) performed well with the highest accuracy. LightGBM, the number of involved vehicles, type of accident, incident location, incident lane type, types of accidents, types of vehicles involved in accidents were shown as priority factors. Based on the results of this model, the establishment of a management strategy for response of highway traffic accident should be presented through a consistent prediction process of accident severity level. This study identifies applicability of Machine Learning Models for Predicting of the Severity of Car Traffic Accidents on a Highway and suggests that various machine learning techniques based on big data that can be used in the future.

A Study on Development of Median Encroachment Accident Model (중앙선침범사고 예측모델의 개발에 관한 연구)

  • 하태준;박제진
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.5
    • /
    • pp.109-117
    • /
    • 2001
  • The median encroachment accident model proposed in this paper is the first step to develop cost-effective criteria about installing facilities preventing traffic accidents by median encroachment. This model consists of expected annual number of median encroachment on roadway and conditional probability to collide with vehicles on opposite lane after encroachment. Expected encroachment number is related to traffic volume and quote from a study of Hutchinson & Kennedy(1966). The probability of vehicle collision is composed of assumed headway distribution of opposite directional vehicles (negative exponential distribution), driving time of encroaching vehicle and Gap & Gap acceptance model. By using expected accident number yielded from the presented model, it will be able to calculate the benefit of reduced accident and to analyze the cost of installing facilities. Therefore this will help develop cost-effective criteria of what, to install in the median.

  • PDF

Development of Prediction Model for Improvement of Safety Facilities in Frequent Traffic Accidents (교통사고 잦은 곳 안전시설 개선 방안 예측 모델 개발)

  • Jaekyung Kwon;Siwon Kim;Jae seong Hwang;Jaehyung Lee;Choul ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • Accidents are greatly reduced through projects to improve frequent traffic accidents. These results show that safety facilities play a big role. Traffic accidents are caused by various causes and various environmental factors, and it is difficult to achieve improvement effects by installing one safety facility or facilities without standards. Therefore, this study analyzed the improvement effect of each accident type by combining the two safety facilities, and suggested a method of predicting the combination of safety facilities suitable for a specific point, including environmental factors such as road type, road type, and traffic. The prediction was carried out by selecting an XGBoost technique that creates one strong prediction model by combining prediction models that can be simple classification. Through this, safety facilities that have had positive effects through improvement projects and safety facilities to be installed at points in need of improvement were derived, and safety facilities effect analysis and prediction methods for future installation points were presented.