본 연구에서 한 지역의 교통안전성을 분석할 수 있도록 교통안전성 지표가 개발되 었다. 연구방법은 회귀분석, 신경망 이론의 적용을 통한 분석, 설문조사였으며 조사지역은 서울시 강남지역이었다. 조사자료는 1996년 교통사고율과 주요 도로설계변수였다. 회귀분석 의 겨로가 8차로 미만의 도로에서는 정지시거가 교통사고 발생을 잘 설명했고 8차로 이상 의 도로에서는 횡단보도의 수가 적절한 설명변수로 선정되었다. 그러나 교통사고 발생에 대 한 설명력이 0.5에도 미치지 못해 심층분석이 요청되어 신경망 이론의 적용이 이루어졌다. 그 결과 교통사고 발생은 회귀분석 결과처럼 정지시거와 횡단 보도수에 관련이 있는 것으로 나타났으며 더불어 접속부의 시거가 중요하게 부각되었다. 한편 사람들의 교통안전성에 대 한 주관적 인식을 알기 위해 설문조사가 이루어졌으며 그 결과 정지시거 외에도 속도의 중 요성이 제기되었다. 이와 같은 분석결과를 근거로 하여 교통안전성 지표가 개발되었으며 지 표 산출에 필요한 평가방법도 정립되었다.
Transactions of the Korean Society of Automotive Engineers
/
v.22
no.2
/
pp.29-36
/
2014
The accident statistics use the data from police accident reports and statistics. Although the official accident statistics are useful, they provide very limited information about how accidents occur, the cause of the accident and the injury mechanisms. This limitations could be overcome by carrying out the in-depth accident study and analysing investigations, collecting more detailed information. Meanwhile a net of in-depth investigation teams are operating worldwide, such as NASS (National Accident Sampling System) and CIREN (Crash Injury Research and Engineering Network) in US, OTS (On the spot investigation) in UK. In this study, the database structure and variables of Korea in-depth accidents investigation system would be proposed through considering the database structure of GIDAS (Germany In-Depth Accidents Study). GIDAS is one of the best system on the in-depth accident study system in the world. GIDAS was established in 1999 as a cooperation project between Federal Highway Research Institute of Germany (BASt) and research association on automotive engineering of German Car Industry(FAT). The iGLAD (Initiative for the Global Harmonization of Accident Data) was also considered to introduce into the database variables of Korea in-depth accident study. Current police reports were compared with GIDAS and iGLAD. To collaborate of the Worldwide in-depth accident data, this paper proposed that the database of Korea in-depth accident study would be introduced the structure of GIDAS and the core variables of iGLAD. Harmonization of the structures and core variables of Korea in-depth accident study will be better than the making unique ones. The database structure and core variables of KIDAS(Korea In-Depth Accident Study) introduced of GIDAS and iGLAD.
Youn, Younghan;Lee, S.;Park, G.Y.;Kim, M.;Kim, I.;Kim, S.;Lee, J.
Journal of Auto-vehicle Safety Association
/
v.7
no.2
/
pp.15-18
/
2015
The availability of in-depth accident data is a prerequisite for each efficient traffic safety management system. Identification and definition of the relevant problem together with knowledge of the data and parameters describing this problem is essential for its successful solution. Comprehensive, up-to-date, accident data is needed for recognition of the scope of road safety problems and for raising public awareness. Reliable and relevant data enable the identification of the contributory factors of the individual accidents, and an unveiling of the background of the risk behaviour of the road users. It offers the best way to explore the prevention of accidents, and ways to implement measures to reduce accident severity. In this study, reviewing the existing iGlad and GIDAS system, KIDAS data format can be finalized through feasibility evaluation. The progressive approach is proposed to successful settlement of Korea in-depth accident study. As the initial stage of in-depth investigation DB construction, the KIDAS is not repetition of the current police based TAAS. It is essential part of improving vehicle safety and reduction of traffic fatality in Korea. 72 Contributing factors like road and traffic characteristics, vehicle parameters, and information about the people involved in the accident have to be investigated and registered as well in the KIDAS.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1184-1186
/
2022
횡단보도에서의 보행자 교통사고 방지를 위한 다양한 방법들이 연구되고 있다. 본 논문에서는 점멸 신호등 상황에서 보행자 교통사고를 감소시키기 위해 영상을 이용한 심층 신경망 기반 횡단보도 보행자 검출 방법을 소개한다. YOLOv5 와 Faster R-CNN 각각을 기반으로 다양한 버전의 횡단보도 보행자 검출기를 구현하고, 이번 실험에서 중점이 되는 이들의 수행 시간을 비교 평가하고 mAP@0.5 가 어느 정도인지 판단하여 가장 적합한 모델을 판단한다. 실험 결과 실시간 처리 측면에서 YOLOs 모델이 84 fps 를 달성함으로써 실시간 보행자 검출에 가장 좋은 성능을 보였다. 횡단보도의 상황은 상시 빠르게 변하므로 가장 빠른 처리 성능을 기록한 YOLOv5s 모델이 실시간 횡단보도 보행자 검출 시스템에 가장 적합한 것으로 판단된다.
Purpose: The trend of highway traffic accidents shows a repeating pattern of increase and decrease, with the fatality rate being highest on highways among all road types. Therefore, there is a need to establish improvement measures that reflect the situation within the country. Method: We conducted accident severity analysis using Random Forest on data from accidents occurring on 10 specific routes with high accident rates among national highways from 2019 to 2021. Factors influencing accident severity were identified. Result: The analysis, conducted using the SHAP package to determine the top 10 variable importance, revealed that among highway traffic accidents, the variables with a significant impact on accident severity are the age of the perpetrator being between 20 and less than 39 years, the time period being daytime (06:00-18:00), occurrence on weekends (Sat-Sun), seasons being summer and winter, violation of traffic regulations (failure to comply with safe driving), road type being a tunnel, geometric structure having a high number of lanes and a high speed limit. We identified a total of 10 independent variables that showed a positive correlation with highway traffic accident severity. Conclusion: As accidents on highways occur due to the complex interaction of various factors, predicting accidents poses significant challenges. However, utilizing the results obtained from this study, there is a need for in-depth analysis of the factors influencing the severity of highway traffic accidents. Efforts should be made to establish efficient and rational response measures based on the findings of this research.
The purpose of this study was a convergence study to find a way to shorten pre-hospital emergency medical response time in vehicle accident. This study analyzed the factors of hospital emergency response time by utilizing weather, road type, accident type, and rescue response to 353 vehicle passengers who visited the three emergency medical centers from January 1, 2011 to July 30, 2016 in Korea In-Depth Accident Study. The results of the study showed that the highway used the most time to prehospital emergency medical response time and was a factor affecting the overall time (${\beta}=.543$, p<.001). In order to shorten the emergency medical response time in highway, the operation of emergency services on the highway, the active use of emergency turn road and the automatic emergency rescue service with individual devices were proposed.
Current Industrial and Technological Trends in Aerospace
/
v.5
no.1
/
pp.25-31
/
2007
헬리콥터와 같이 비행 중 고장 또는 작동 불능 시 대처가 용이하지 않고 대형의 참사로 이어지는 비행체에 대해서는 안전이 최우선으로 고려되어야 한다. 미국의 국가교통안전위원회에서는 1963년부터 1997년까지 34년간 민간부문의 회전익기의 사고를 조사하여 분석한 바 있다. 본 논문은 터빈엔진 헬리콥터의 사고 동향을 파악하여 헬리콥터 안전 운항에 기여하고, 또한 한국형 중형 민수헬기를 개발하기에 앞서 주요 설계요소를 고려하기 위하여 NTSB에서 미국의 민수용 단발 및 쌍발 터빈 엔진 헬리콥터 사고에 대하여 유형별로 집계, 조사한 결과를 인용하여 전반적인 사고 경향, 사고 유형 또는 원인, 활동별, 운용 단계 별에 사고에 대하여 심층적으로 비교, 분석하였다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.4
/
pp.44-57
/
2019
Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.
Lim, Sam Jin;Park, Jun Tae;Kim, Young Il;Kim, Tae Ho
Journal of Korean Society of Transportation
/
v.30
no.6
/
pp.37-46
/
2012
The number of traffic accidents caused by elderly drivers over the age of 65 has surged over the past ten years from 37,000 to 274,000 cases. The proportion of elderly drivers' accidents has jumped 3.1 times from 1.2% to 3.7% out of all traffic accidents, and traffic safety organizations are pursuing diverse measures to address the situation. Above all, connecting safety measures with an in-depth research on behavioral and physical characteristics of elderly drivers will prove vital. This study conducted an empirical research linking the driving characteristics and traffic accidents by elderly drivers based on the Driving Aptitude Test items and traffic accident data, which enabled the measurement of behavioral characteristics of elderly drivers. In developing the Influence Model, we applied the zero-inflated Poisson (ZIP) regression model and selected an accident prediction model based on the Bayesian Influence in regards to the ZIP regression model and the zero-inflated negative binomial (ZINB) regression model. According to the results of the AAE analysis, the ZIP regression model was more appropriate and it was found that three variables? prediction of velocity, diversion, and cognitive ability? had a relation of influence with traffic accidents caused by elderly drivers.
An automobile black box can provide sufficient and accurate information for investigating the causes of vehicle accidents as well as preventing them in the future. The database of accident information from stored data in the black box can provide a variety of services to the general public when it is accessed in a reasonable manner. minimizing intrusion into drivers' privacy. Therefore, the black box could become the main intelligent automobile Part, with extensive benefits for all associated industries as well as government agencies and insurance companies. While the introduction and spread of the black box are imminent in Korea, this paper reviews technology and product trends of the black box. In particular, this paper presents findings on the investigation of black box-related patent applications and an in-depth study of core patents from several leading counties, including the United States. In addition, this paper describes trends of standardization and legislation in leading countries and presents methods of standardization with suggestions for some development topics related to black box technology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.