• Title/Summary/Keyword: 교통데이터

Search Result 1,794, Processing Time 0.029 seconds

A Study on the Prediction of Traffic Accidents Using Artificial Intelligence (인공지능을 활용한 교통사고 발생 예측에 대한 연구)

  • Kim, Ga-eul;Kim, Jeong-hyeon;Son, Hye-ji;Kim, Dohyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.389-391
    • /
    • 2021
  • Traffic regulations are expanding to prevent traffic accidents for people's safety, but traffic accidents are not decreasing. In this study, the probability of traffic accidents occurring at a specific time and place is estimated by analyzing various factors such as weather forecast data from the Meteorological Agency, day of the week, time of day, location data, and location information. This study combines objective data on the occurrence of numerous previous traffic accidents with various additional elements not considered in previous studies to derive a more improved traffic accident probability prediction model. The results of this study can be effectively used for various transportation-related services for the safety of people.

  • PDF

A Study of Traffic Flow Characteristics for Estimating Queue-Length in Highway (고속도로 대기행렬 길이 산정모형 개발을 위한 연속류 특성 분석)

  • 노재현
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10b
    • /
    • pp.297-297
    • /
    • 1998
  • 고속도로의 교통혼잡을 관리하기 위해서는 근본적으로 혼잡지점 상류부의 진입교통량을 제어해야 한다. 이를 위한 효과적인 램프미터링 운영전략이나 고속도로 교통정보제공방안을 수립하기 위해서는 혼잡영향권(대기행렬길이)에 관한 신뢰성 있는 데이터가 반드시 필요하다. 고속도로의 대기행렬길이를 산정하기 위해 일반적으로 충격파이론과 Queueing이론을 제시하고 있다. 그러나, 기존의 충격파 이론을 포물선형의 교통량-밀도관계식을 근거로 하고 있어 충격파간에 발생하는 부수적인 충격파를 해석하는 과정이 수학적으로 불가능하여 실질적인 목적으로 사용할 수 없음은 이미 잘 알고 있는 사실이다. 최근에 이러한 한계를 극복할 수 있는 새로운 방법으로 교통량 밀도간의 관계식을 삼각형으로 가정하고 교통량 대신에 누적교통량을 사용하는 Simplified Theory of Kinematic Waves In Highway Traffic이 개발(Newell, 1993)되었지만, 이 방법을 적용하기 위해서는 기본적으로 대상 고속도로 구간의 교통량-밀도관계식을 규명해야 하는 어려움이 있다.(사실 실시간으로 밀도데이터를 수집하기란 불가능하다.) Queueing이론에서 제시하는 대기행렬은 모두 대기차량이 병목지점에 수직으로 정렬하여 도로를 점유하지 않는 Point Queue(혹은 Vertical stack Queue)로서 실제로 도로상에 정렬된 대기행렬(Real Physical Queue)과는 전혀 다르다. 이미 입증된 바 있어, Queueing이론을 이용함은 타당성이 없다. 이러한 사실에 근거하여 본 연구는 고속도로 대기행렬길이를 산정할 수 있는 모형개발을 위한 기초연구로서 혼잡상태의 연속류 특성을 분석하는데 목적이 있다. 이를 위해, 본 연구에서는 서울시 도시고속도로에서 수집한 실제 데이터를 이용하여 진입램프지점의 혼잡상태에서 대기행렬의 증가 또는 감소하는 과정을 분석하였다. 주요 분석결과는 다음과 같다. 1. 혼잡초기의 대기행렬은 다른 혼잡시기에 비해 상대적으로 급속한 속도로 증가함. 2. 혼잡초기의 대기행렬의 밀도는 다른 혼잡시기에 비해 비교적 낮음. 3. 위의 두 결과는 서로 관계가 있으며, 혼잡시 운전자의 행태(차두간격)과 혼잡기간중에도 변화함을 의미함. 4. 교통변수 중에서 대기행렬길이를 산정하는데 적합한 교통변수를 교통량과 밀도로 판단됨. 5. Queueing이론에서 제시하는 대리행렬길이 산정방법인 대기차량대수$\times$평균차두간격은 대기행렬내 밀도가 일정하지 않아 부적합함을 재확인함. 6. 혼잡초기를 제외한 혼잡기간 중 대기행렬길이는 밀도데이터 없이도 혼잡 상류부의 도착교통량과 병목지점 본선통과교통량만을 이용하여 추정이 가능함. 7. 이상에 연구한 결과를 토대로, 고속도로 대기행렬길이를 산정할 수 있는 기초적인 도형을 제시함.

  • PDF

Microscopic Traffic Parameters Estimation from UAV Video Using Multiple Object Tracking of Deep Learning-based (다중객체추적 알고리즘을 활용한 드론 항공영상 기반 미시적 교통데이터 추출)

  • Jung, Bokyung;Seo, Sunghyuk;Park, Boogi;Bae, Sanghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.83-99
    • /
    • 2021
  • With the advent of the fourth industrial revolution, studies on driving management and driving strategies of autonomous vehicles are emerging. While obtaining microscopic traffic data on vehicles is essential for such research, we also see that conventional traffic data collection methods cannot collect the driving behavior of individual vehicles. In this study, UAV videos were used to collect traffic data from the viewpoint of the aerial base that is microscopic. To overcome the limitations of the related research in the literature, the micro-traffic data were estimated using the multiple object tracking of deep learning and an image registration technique. As a result, the speed obtained error rates of MAE 3.49 km/h, RMSE 4.43 km/h, and MAPE 5.18 km/h, and the traffic obtained a precision of 98.07% and a recall of 97.86%.

Speed Prediction of Urban Freeway Using LSTM and CNN-LSTM Neural Network (LSTM 및 CNN-LSTM 신경망을 활용한 도시부 간선도로 속도 예측)

  • Park, Boogi;Bae, Sang hoon;Jung, Bokyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.86-99
    • /
    • 2021
  • One of the methods to alleviate traffic congestion is to increase the efficiency of the roads by providing traffic condition information on road user and distributing the traffic. For this, reliability must be guaranteed, and quantitative real-time traffic speed prediction is essential. In this study, and based on analysis of traffic speed related to traffic conditions, historical data correlated with traffic flow were used as input. We developed an LSTM model that predicts speed in response to normal traffic conditions, along with a CNN-LSTM model that predicts speed in response to incidents. Through these models, we try to predict traffic speeds during the hour in five-minute intervals. As a result, predictions had an average error rate of 7.43km/h for normal traffic flows, and an error rate of 7.66km/h for traffic incident flows when there was an incident.

Conv-LSTM-based Range Modeling and Traffic Congestion Prediction Algorithm for the Efficient Transportation System (효율적인 교통 체계 구축을 위한 Conv-LSTM기반 사거리 모델링 및 교통 체증 예측 알고리즘 연구)

  • Seung-Young Lee;Boo-Won Seo;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.321-327
    • /
    • 2023
  • With the development of artificial intelligence, the prediction system has become one of the essential technologies in our lives. Despite the growth of these technologies, traffic congestion at intersections in the 21st century has continued to be a problem. This paper proposes a system that predicts intersection traffic jams using a Convolutional LSTM (Conv-LSTM) algorithm. The proposed system models data obtained by learning traffic information by time zone at the intersection where traffic congestion occurs. Traffic congestion is predicted with traffic volume data recorded over time. Based on the predicted result, the intersection traffic signal is controlled and maintained at a constant traffic volume. Road congestion data was defined using VDS sensors, and each intersection was configured with a Conv-LSTM algorithm-based network system to facilitate traffic.

Design and Implementation of GML Transformation System based on Standard Transportation Framework Model of TTA (TTA 표준 교통 프레임워크 데이터 모델 기반 GML 변환 시스템 설계 및 구현)

  • Lee, Ki-Won;Kim, Hak-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.25-35
    • /
    • 2006
  • Standardization or standard-related study are regarded as main issues in GIS applications. Though several GIS standards and specifications have been released, there are a few actual application cases adapting those. In this study, we designed and implemented a geo-spatial information processing system with editing, storing, and disseminating functions, in which standard GIS transportation data model by TTA linked with OGC-GML, XML-based geographic features encoding standard. The system developed in this study enables us to transfer and edit transportation entities based on TTA standards to GML, importing ESRI shapefile. In web-based system, GML-based databases are transformed to SVG file, for the purpose of web publishing. TTA GIS transportation data model is used in this study, and tested; however, standard data models from other application fields also can be easily applied because this system basically provides data importing and editing functions. This system as practical tools can be utilized for applicability test of GIS standard data model and practical operation of standard specification.

  • PDF

PORT-MIS 선박 입출항 빅데이터를 이용한 항로 통항 특성 분석

  • Kim, Gwang-Il;Jeong, Jung-Sik;Lee, Jin-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.93-95
    • /
    • 2019
  • 일반적으로 항만 내 선박 교통류 평가는 AIS 데이터를 이용하여 수행이 되어져 왔다. AIS 데이터는 선박의 위치 확인에 용이하여 항로상 선박 교통분포 분석에 용이하였다. 하지만, AIS 데이터는 VTS에 저장되어 있는 기간이 짧고, 처리할 데이터의 양이 많은 단점이 있다. 한편, PORT-MIS 선박 입출항 데이터는 10년 이상 저장이 되어 있으며, 통항로상 통계적 선박교통밀도 분석에 활용이 용이하다. 본 연구에서는 PORT-MIS 빅데이터 분석 방법과 선박 입출항 데이터를 항로상의 통항데이터로 변환하는 방법을 개발하여 제시하고자 한다.

  • PDF

A Study on the Implementation of web service for traffic accident information management system development (교통사고정보관리를 위한 웹 서비스 구현에 관한 연구)

  • Jung, Sue-Jin;Park, Sung-Kyu;Go, Je-Ung;Cho, Gi-Sung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.393-399
    • /
    • 2005
  • 본 논문은 현재 교통사고로 인한 피해가 심각한 상황에서 기존 교통사고 원인분석을 위한 많은 양의 자료를 효과적으로 처리할 수 있는 WebGIS 기반 교통사고 정보관리 시스템을 개발하였다. 더불어 교통정보를 어떻게 구성하고 어떤 방법으로 전달할 것인가에 대한 방안을 제시하고, 교통사고 정보에 대한 비공간적인 속성뿐만 아니라 도형자료와 기본적인 수치지도 등을 통합 관리할 수 있도록 하였다. 또한 교통사고 자료가 일반인들에게 제공되기 위한 준비 기간이 길었던 종래 방식에 비해 데이터 입력이 완료되는 즉시 인터넷을 통해 해당 지역의 교통사고 정보를 제공하는 실시간 교통사고 현황 정보제공 기능을 구현하였다. 이전의 단순한 집계에 의한 비공간적인 데이터를 사용한 교통사고 분석보다는 교통사고의 자세한 내용 및 통계자료와 함께 사고위치를 시각적으로 도시하여 가시적으로 주변 환경을 파악할 수 있는 기능을 제공하였으며 사고 담당 경찰관과 직접 연계할 수 있는 인터페이스를 제공하였다.

  • PDF

Basic Research on the Elements of Maritime Traffic Characteristic Model (해상교통 특성 모델의 요소 식별에 관한 기초 연구)

  • Oh, Jae-Yong;Kim, Hye-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.1-2
    • /
    • 2019
  • 일반적인 해상교통 분석 방법은 대상 항만의 항적 데이터를 기반으로 데이터를 추출한 후 모델을 구축하며, 구축된 모델을 바탕으로 해상교통 현상을 재현하고 있지만, 이러한 방법은 항로 혹은 통항량 변동 등의 변화에 따른 교통류를 예측할 수 없어 그 활용에 제약이 많다. 본 논문에서는 기존의 해상교통 분석 사례를 통해 교통 특성 모델의 요소를 식별하고, 이를 동적인 해상교통 환경을 시뮬레이션 할 수 있는 에이전트 기반의 교통류 생성 기술 개발의 기초 자료로 활용하고자 한다.

  • PDF

Elderly Driver-involved Crash Analysis and Crash Data Policy (기계학습을 활용한 고령운전자 교통사고 분석 및 교통사고 데이터 정책 제언)

  • Kim, Seunghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.90-102
    • /
    • 2022
  • Currently, in our society with a substantial and increasing fraction of the elderly population, transport safety for elderly drivers is becoming the center of attention. However, deficient data on vehicle crashes in South Korea limits the growth of traffic accident research pertaining to the country. So, we complemented South Korean vehicle crash data by examining USA vehicle crash data, especially the data of Ohio State, and analyzing the influential factors of elderly driver-involved crashes of the State. Subsequently, we suggested a way of improving the South Korean dataset. Notably, our study showed that the influential factors were vehicle speed, posted speed, and following other vehicles too close and provided them in the South Korean dataset.