교통안전 선진국에서는 사고 자료의 수집, 저장, 공유와 관련된 도로교통사고 자료 관리 체계를 합리화하기 위해 부단히 노력하고 있으나, 우리나라에서는 이미 오래 전에 만들어진 도로교통사고 자료양식을 수정 없이 사용해오고 있으며, 정확한 교통사고 발생지점 및 교통사고 분석 자료를 체계적으로 관리하지 못하고 있어 아직 후진성을 면치 못하고 있는 것이 현실이다. 본 연구는 교통사고 자료를 지형공간정보체계(Geographic Information System : GIS) 기반으로 구축하여 기존에 텍스트 형태의 자료 수집이 아닌 PDA를 이용하여 실시간으로 사고 자료를 표준 양식에 맞게 변환하여 저장 및 사고 정보를 관리할 수 있으며, 공간데이터 특수성과 연계하여 사고원인에 대한 지리적 분석 데이터로 표출하는 통합 관리시스템 개발에 관한 연구를 수행하였다.
교통정책과 계획수립에 가장 중요한 의사결정 과정은 통행수요 분석이고, 이에 활용되고 있는 필수적인 기초 데이터베이스는 분석용 네트워크와 기종점 통행량이 있다. 통행수요 추정과정의 합리성이 보장되도록 하기 위해서는 이러한 기본 입력 자료의 신뢰성은 중요하다. 하지만, 일반적으로 분석용 네트워크를 구축할 때 예산과 분석기간의 제약 때문에 실세계의 교통망 중 많은 부분을 단순화 시켜서 구축한다. 또한 기 구축된 네트워크에 대해서도 변경되는 교통망을 반영하기 위해 네트워크를 수정, 편집할 때에도 많은 재원과 시간이 소요된다. 본 연구에서는 이러한 문제점을 보완하고자 교통분석 목적의 패키지(EMME/2, TranPlan) 혹은 범용의 GIS 패키지(ArcGIS)에서 직접 이용할 수 있도록 기 구축된 네트워크를 기반으로 GIS 데이터로의 변환 혹은 네트워크를 추출하는 양방향 데이터 교환 시스템을 개발하였다. 이러한 GIS-T 통합 시스템은 네트워크의 편집과 분석에 효율적인 환경을 제공하여 보다 현실적인 교통망 모델링을 반영할 것으로 기대되며 다양한 교통문제에 대한 분석에 효과적인 도구로 활용될 수 있을 것이다.
Hong Sung-Ho;Kim Jin-Woo;Kim Young-Gab;Ki Yong-Kul
Proceedings of the Korean Information Science Society Conference
/
한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
/
pp.76-78
/
2005
본 교통사고 동영상 DB 설계의 연구 목적은 교통사고 자동기록장치에서 수집되는 교통사고 동영상 자료를 효율적으로 활용하기 위한 교통사고 동영상 DB 구축 방안에 관한 연구이며, 이를 위해 ISO/IEC 11179 표준인 MDR을 이용한 교통사고 동영상 DB 논리 모델을 제안하는 데 있다. 본 논문에서 제안하는 DB구조를 통해 실시간 대용량 교통사고 동영상 데이터에 대한 데이터의 생성, 관리 및 검색 성능을 향상시킬 수 있을 뿐만 아니라, MDR 표준 개념 적용으로 상호 이질적인 DB 간의 상호운용성(interoperability)이 증대된다.
지능형교통체계(ITS:Intellegent Transport System)의 구현을 위한 가장 중요한 요소중의 하나는 교통정보의 생성이다. 교통정보의 생성은 루프 검지기, 폐쇄회로(CCTV), probe 차량, 경찰, 통신원 등을 수집된 제보자료들을 분석 및 가공함으로써 이루어진다. 그러나 이들 수집원은 주어진 시간에 있어 모든 네트웍을 통해서 자료가 완전히 수집되어지는 것은 아니다. 즉, 특정 지역에 수집원이 몰려 있는 경우가 있는 반면, 전혀 수집되어지지 않는 지역이 발생할 수도 있다. 이러한 공간적인 불균형적 특성은 동시에 발생한 다량의 자료를 처리하는 기술과 자료가 수집되지 않은 지역에 대한 처리기술을 요하게 된다. 본 논문은 전술한 바와 같은 사항에 대하여 ITS의 진행 단계별로 드러날 수 있는 문제점을 검토하고, 자료통합에 대한 일반적인 개념을 우선 설명한다. 다음에 특정시각에 주어진 자료의 통합을 위해 퍼지선형회귀모형(fuzzy linear regression model)과 데이터 퓨전(data fusion)기법의 내용을 소개하고, 신뢰성있는 단일 교통정보생성을 위한 테이터 퓨전 알고리즘을 제시한다. 또한 제시된 알고리즘을 토대로 가상의 자료를 이용하여 적용가능 봉? 타진해 보았다. 제시되어진 알고리즘은 향후 교통정보 수집환경이 어느 정도 형성된다고 볼 때, 예측치와 실측자료간의 자료검증을 통하여 신뢰도를 가질 경우 보다 광범위하게 사용되어질 수 있을 것으로 판단된다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
한국항해항만학회 2023년도 춘계학술대회
/
pp.42-44
/
2023
신규 해상교통관제사의 직무 역량 향상을 위하여 시뮬레이션 교육은 가장 안전하고 효율적인 수단이다. 하지만 시뮬레이션 교육 시 한정된 시나리오로 인하여 각 항만의 실질적 특성 적응에 어려움을 보이는 실정이다. 이에 각 항만 별 특성에 맞는 여러 시나리오 개발에 필요한 개선 사항을 기초 연구 하였다. 먼저 주요 관제 사례를 수집하여 데이터관리를 하며, 수집된 데이터를 기반의 시뮬레이션 시나리오를 개발하는 것이다. 시나리오는 신규 해상교통관제사 교육뿐만 아니라 더 나아가 유관 및 민간 기관의 VTS 관련 연구에도 도움이 될 것이며, 시뮬레이션 개발의 한가지 지표로서 제안될 수 있다.
Kim, Ki-su;Yi, Jae-Jin;Kim, Hong-Hoi;Jang, Yo-lim;Hahm, Yu-Kun
The Journal of Bigdata
/
제4권2호
/
pp.207-220
/
2019
Recent developments in information and communication technology has enabled the deployment of sensor based data to provide real-time services. In Korea, The Korea Transportation Safety Authority is collecting driving information of all commercial vehicles through a fitted digital tachograph (DTG). This information gathered using DTG can be utilized in various ways in the field of transportation. Notably in autonomous driving, the real-time analysis of this information can be used to prevent or respond to dangerous driving behavior. However, there is a limit to processing a large amount of data at a level suitable for real-time services using a traditional database system. In particular, due to a such technical problem, the processing of large quantity of traffic big data for real-time commercial vehicle operation information analysis has never been attempted in Korea. In order to solve this problem, this study optimized the new database server system and confirmed that a real-time service is possible. It is expected that the constructed database system will be used to secure base data needed to establish digital twin and autonomous driving environments.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
제40권3호
/
pp.147-157
/
2022
Recently, many studies have been conducted to analyze traffic or object recognition that classifies vehicles through artificial intelligence-based prediction models using CCTV (Closed Circuit TeleVision)or drone images. In order to develop an object recognition deep learning model for accurate traffic estimation, systematic data construction is required, and related standardized guidelines are insufficient. In this study, previous studies were analyzed to derive guidelines for establishing artificial intelligence-based training data for traffic estimation using drone images, and business reports or training data for artificial intelligence and quality management guidelines were referenced. The guidelines for data construction are divided into data acquisition, preprocessing, and validation, and guidelines for notice and evaluation index for each item are presented. The guidelines for data construction aims to provide assistance in the development of a robust and generalized artificial intelligence model in analyzing the estimation of road traffic based on drone image artificial intelligence.
Rasyidi, Mohammad Arif;Kim, Jeongmin;Ryu, Kwang Ryel
Journal of Intelligence and Information Systems
/
제20권1호
/
pp.121-131
/
2014
Traffic speed is an important measure in transportation. It can be employed for various purposes, including traffic congestion detection, travel time estimation, and road design. Consequently, accurate speed prediction is essential in the development of intelligent transportation systems. In this paper, we present an analysis and speed prediction of a certain road section in Busan, South Korea. In previous works, only historical data of the target link are used for prediction. Here, we extract features from real traffic data by considering the neighboring links. After obtaining the candidate features, linear regression, model tree, and k-nearest neighbor (k-NN) are employed for both feature selection and speed prediction. The experiment results show that k-NN outperforms model tree and linear regression for the given dataset. Compared to the other predictors, k-NN significantly reduces the error measures that we use, including mean absolute percentage error (MAPE) and root mean square error (RMSE).
The Journal of The Korea Institute of Intelligent Transport Systems
/
제19권6호
/
pp.208-221
/
2020
The objective of this study is to estimate and analyze the traffic density of continuous flow using the trajectory of individual vehicles and the headway of sample probe vehicles-front vehicles obtained from ADAS (Advanced Driver Assitance System) installed in sample probe vehicles. In the past, traffic density of continuous traffic flow was mainly estimated by processing data such as traffic volume, speed, and share collected from Vehicle Detection System, or by counting the number of vehicles directly using video information such as CCTV. This method showed the limitation of spatial limitations in estimating traffic density, and low reliability of estimation in the event of traffic congestion. To overcome the limitations of prior research, In this study, individual vehicle trajectory data and vehicle headway information collected from ADAS are used to detect the space on the road and to estimate the spatiotemporal traffic density using the Generalized Density formula. As a result, an analysis of the accuracy of the traffic density estimates according to the sampling rate of ADAS vehicles showed that the expected sampling rate of 30% was approximately 90% consistent with the actual traffic density. This study contribute to efficient traffic operation management by estimating reliable traffic density in road situations where ADAS and autonomous vehicles are mixed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.