• Title/Summary/Keyword: 교차유동

Search Result 83, Processing Time 0.031 seconds

Study on the Effect of Performance Factors on the Evaporator Using Liquid Desiccant Falling Flim for Dehumidification (습식건조제 이용 제습에서의 증발기 성능인자 영향 연구)

  • Park, M.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.512-520
    • /
    • 1995
  • This study investigates the simultanceous heat and mass transfer between a falling desiccant film and air in cross flow at the interface. The application of this work is the optimization of falling film evaporators for use in potential hybrid air conditioning systems. The specific geometry considered is liquid TEG films falling along the vertical cooled surfaces of a channel with air in cross flow. The equations to describe the coupled heat and mass transfer between a falling desiccant film and air in cross flow for a falling film evaporator have been presented and solved numerically. The effects of important design and operating variables on the evaporator performance predicted by the parametric numerical analysis and suggestions for performance improvements of the evaporator are presented.

  • PDF

Simple Fabrication of Micromixer Based on Non-Equilibrium Electrokinetics in Micro/Nano Hybrid Fluidic System (단순공정으로 제작된 마이크로/나노 하이브리드 채널의 불균형 동전기성을 이용한 미세혼합기 연구)

  • Yu, Samuel;Kim, Sun-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this study, we developed a micromixer based on the non-equilibrium electrokinetics at the junction of a microchannel and nanochannel. Two fluid streams were mixed by an electro-osmotic flow and a vortex flow created as a result of the non-equilibrium electrokinetics at the junction of the microchannel and nanochannel. Initially, the microchannel was fabricated using Polydimethylsiloxane (PDMS) by the general soft lithography process and the nanochannel was created at a specific position on the microchannel by applying a high voltage. To evaluate the mixing performance of the micromixer, fluorescent distribution was analyzed by using the fluorescent dye, Rhodamine B. About 90% mixing was achieved with this novel micromixer, and this micromixer can be used in microsystems for biochemical sample analysis.

A Comparative Study on the REV, non-REV and Joint Network Methods for Analysis of Groundwater Flow in Jointed Rock Masses (절리암반내 지하수 유동해석을 위한 대표체적법, 비대표체적법 및 절리망 해석법의 비교 연구)

  • 문현구
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.217-228
    • /
    • 1999
  • The three methods of analysis (i) REV(representative elemental volume), (ii) non-REV and (iii) joint network analysis are introduced in this paper to analyze the groundwater flow in jointed rock mass and the inflow into underground excavations. The results from those methods are compared one another to reveal their characteristics by varying the number of joints and the diameter of the opening. The pre-processor, the so-called sequential analysis, is introduced to predict the equivalent hydraulic conductivity of a jointed rock mass having a number of intersecting joints. Using the finite element mesh, joint map and sequential analysis, the equivalent hydraulic conductivities are calculated for all 445 elements. The hydraulic inhomogeneity and the determination of the representative properties of jointed rock masses are discussed. In the REV analysis where the entire rock mass is homogenized through the representative properties, the inflow is increased regularly and consistently by increasing the joint density, the opening size and the conductivity contrast value. Though the non-REV analysis showed irregular variation of the inflow due to the local inhomogeneity allowed to individual elements, the inflow approached the REV results as the characteristic length increases. The joint network analysis showed the most sensitive reaction to the joint density, the opening size and the presence of the network crossing the opening. The reliability of the network analysis depends on the geometric data of individual joints. In view of the limited field data on joint geometry and possible uncertainty the REV and non-REV methods are considered more practical and rational than the joint network analysis.

  • PDF

Development of Network Equipment Based on V2X System for Automatic Intersection Traffic Signal Control (V2X 시스템 기반 교차로 네트워크 자동 신호시스템 개발에 관한 연구)

  • Oh, Jeakon;Kim, Hyungjin;Kang, JeongJin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.173-177
    • /
    • 2016
  • Korea, the traffic and transportation problems are significant because private cars are increasing constantly. Therefore, it is imperative to improve traffic condition so as to solve the problems such as traffic congestion and accidents which may occur due to the increase of vehicles in a limited area through the signal control. However, the current operating system for traffic control cannot provide car users the optimal signal but it generates a time delay of vehicles, traffic congestions etc. In this paper, we propose and implement the system based on V2X based automatic controller, which reduces the waste of time and the driver's psychological stress on the road intersection.

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

Shelter location-allocation for Tsunami Using Floating Population and Genetic Algorithm (유동인구 데이터와 유전자 알고리즘을 이용한 지진해일 대피소 선정)

  • Bae, Junsu;Kim, Mi-Kyeong;Yoo, Suhong;Heo, Joon;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.157-165
    • /
    • 2019
  • Recently, large and small earthquakes have occurred in the Korean peninsula. In this sense, Korea is no longer considered as an earthquake free zone. Especially, it is necessary to respond quickly to earthquake tsunami which may be caused by the influence of neighboring countries with large earthquakes. Since the occurrence of tsunamis can cause great casualties, it is very important to allocate the location of the shelter in case of an earthquake. Although many researches on shelter allocation have been conducted in various ways, but most of them have been analyzed based on administrative district resident data, resulting in a lack of reality. In this study, floating population data were used to reflect reality in case of emergency situations, and genetic algorithm, which produce good results among the heuristic algorithms, was used to select shelter locations. The number of evacuees was used as a objective function of genetic algorithm and the optimal solution was found through selection, crossover and mutation. As a result of the research on Busan Haeundae-Gu, selected as a research area, allocating eight shelters was the most efficient. The location of the new shelters was selected not only in residential areas but also in major tourist areas whose results can not be derived from administrative district resident data alone, and the importance of utilizing the floating population data was confirmed through this study.

Characteristics of Block Hydraulic Conductivity of 2-D DFN System According to Block Size and Fracture Geometry (블록크기 및 균열의 기하학적 속성에 따른 2-D DFN 시스템의 블록수리전도도 특성)

  • Han, Jisu;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.450-461
    • /
    • 2015
  • Extensive numerical experiments have been carried out to investigate effect of block size and fracture geometry on hydraulic characteristics of fractured rock masses based on connected pipe flow in DFN systems. Using two fracture sets, a total of 72 2-D fracture configurations were generated with different combinations of fracture size distribution and deterministic fracture density. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated fracture network system were calculated using the 2-D equivalent pipe network method. There exist significant effects of block size, orientation, density and size of fractures in a fractured rock mass on its hydraulic behavior. We have been further verified that it is more difficult to reach the REV size for the fluid flow network with decreasing intersection angle of two fracture sets, fracture plane density and fracture size distribution.

Fracture Analysis for Evaluation of Groundwater Flow around the Geumjeong Mountain, Busan (부산시 금정산 일원의 지하수 유동 해석을 위한 단열계 분석)

  • Son, Moon;Hamm, Se-Yeong;Kim, In-Soo;Lee, Yung-Hee;Jeong, Hun;Ryu, Choon-Kil;Son, Won-Kyong
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.305-317
    • /
    • 2002
  • Geological, structural, and fracture density maps were drawn up to clarify the groundwater flow system around the Geumjeong Mountain, Busan. The results show that the topographical basin formed in the Sanseong Town is considered as a major recharge area of groundwater around the Geumjeong Mt. Because NS-trending fault and ENE-trending fault are intersecting and NS-trending and EW-trending fracture sets are highly developed in the basin, it is believed that the geological structure was developed in the basin which facilitates ground recharge. Based on the density distributions and characteristics of fractures, it is possible that the recharged groundwater in the basin would circulate to the depth of about 3~4 km and finally would reach the Dongnae Hot-spring region.

Experimental Study of Vegetated Flows in the Stream-scale Natural Channel (자연형 수로 내 식생흐름 분석을 위한 실험적 연구)

  • Ryu, Yong-Uk;Kim, Jihyun;Ji, Un;Kang, Joongu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.587-594
    • /
    • 2019
  • This study experimentally investigated the effects of high and low densities of vegetation patches on the flow characteristics in a stream-scale outdoor experimental channel with rooted willows. Stream-scale experiments on vegetated flows were carried out for an emergent condition of vegetation. Vegetation patches were arranged by alternate bar formation and the flows in vegetated and non-vegetated sections were compared. Three-dimensional flow structure was measured by ADV (Acoustic Doppler Velocimeter) and the vertical distributions of longitudinal velocity were mainly analyzed from the measurements at various points. Flow velocities show different patterns depending on the density of vegetation patches. The difference in flow velocity between in the vegetated and non-vegetated sections appear to large in the dense patches and the flow becomes complicated at the downstream edge of the patch. Despite the upstream flow disturbed by the first patch, the flows over the second patch show the similar pattern.

Flow Analysis of a Low-Noise Turbo Fan for a Vacuum Cleaner (진공청소기용 저소음 터보팬 내부 유동 해석)

  • Lee, Ki-Choon;Kim, Chang-Jun;Hur, Nahmkeon;Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.14-20
    • /
    • 2003
  • In this study an analysis of the flow characteristics in three types of turbo-fans for a vacuum cleaner was performed by using CFD. The characteristics of three models calculated for various rotating speed for flow rates are obtained and compared with measured data. The mixing plane approach is applied to compute the flow between impeller and diffuser. The results show that the model that is modified to reduce fan noise gives stable flow characteristics in operating range than the original model, with both models show similar performance characteristics at the range of high flow rate. Since in the modified model it takes much longer for an impeller blade to pass a diffuser blade than in the original model, and the peak pressure at BPF can be relieved, it is anticipated that the modified model give much lower noise level with similar performance than the original one, which remains to be verified by unsteady computation and measurements. The good agreement between the predictions and measurement results confirms the validity of this study.