• Title/Summary/Keyword: 교차유동

Search Result 83, Processing Time 0.028 seconds

Numerical Analysis of Two-Dimensional Nonlinear Radiation Problem Using Higher-Order Boundary Element Method (고차경계요소법을 이용한 2차원 비선형 방사문제의 수치해석)

  • Hong-G. Sung;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-81
    • /
    • 2000
  • An accurate and efficient numerical method for two-dimensional nonlinear radiation problem has been developed. The wave motion due to a moving body is described by the assumption of ideal fluid flow, and the governing Laplace equation can be effectively solved by the higher-order boundary element method with the help of the GMRES (Generalized Minimal RESidual) algorithm. The intersection or corner problem is resolved by utilizing the so-called discontinuous elements. The implicit trapezoidal rule is used in updating solutions at new time steps by considering stability and accuracy. Traveling waves caused by the oscillating body are absorbed downstream by the damping zone technique. It is demonstrated that the present method for time marching and radiation condition works efficiently for nonlinear radiation problem. To avoid the numerical instability enhanced by the local gathering of grid points, the regriding technique is employed so that all the grids on the free surface may be distributed with an equal distance. This makes it possible to reduce time interval and improve numerical stability. Special attention is paid to the local flow around the body during time integration. The nonlinear radiation force is calculated by the "acceleration potential technique". Present results show good agreement with other numerical computations and experiments.

  • PDF

Groundwater Flow Modeling in a Block-Scale Fractured Rocks considering the Fractured Zones (단열대의 영향을 고려한 블록 규모 단열 암반에서의 지하수 유동 모의)

  • Ko, Nak-Youl;Ji, Sung-Hoon;Koh, Yong-Kwon;Choi, Jon-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.159-166
    • /
    • 2010
  • The block-scale groundwater flow system at Olkiluoto site in Finland was simulated. The heterogeneous and anisotropic hydraulic conductivity field for the domain was constructed from the discrete fracture network, which considered only the fractured zones identified in the deep boreholes installed in the study site. The groundwater flow model was calibrated by adjusting the recharge rate and the transmissivities of the fractured zones to fit the calculated hydraulic heads and into- and out-flow rates in the observation intervals of the boreholes with the observed ones. In the calibrated model, the calculated flow rates at some intervals were not in accordance with the observed ones although the calculated hydraulic heads fit well with the observed ones, which revealed that the number of the conduits for groundwater flow is insufficient in the conceptual model for groundwater flow modeling. Therefore, it was recommended that the potential local conduits such as background fractures should be added to the present conceptual model.

Determination of Flow Stress of Zircaloy-4 Under High Strain Rate Using Slot Milling Test (슬롯밀링시험을 이용한 높은 변형률 속도 조건하에서 Zircaloy-4의 유동응력 결정)

  • Hwang, Jihoon;Kim, Naksoo;Lee, Hyungyil;Kim, Dongchoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • The flow stress of zircaloy-4 used in the spacer grid supporting a nuclear fuel rod was determined by the Johnson-Cook model, and model parameters were determined using reverse engineering. Parameters such as A, B, n and $\dot{\varepsilon}_0$ were determined by the tensile test result. To obtain the parameters C and m, a slot milling test and numerical simulation were performed. The objective functions were defined as the difference between the experimental and the simulation results, and then, the parameters were determined by minimizing the objective function. To verify the validity of the determined parameters, cross-verification for each case was conducted through a shearing test and simulation. The results tend to show agreement with the experimental results, such as the features of sheared edges and maximum punch force, with the correlation coefficients exceeding at least 0.97.

Geographically Weighted Regression on the Characteristics of Land Use and Spatial Patterns of Floating Population in Seoul City (서울시 유동인구 분포의 공간 패턴과 토지이용 특성에 관한 지리가중 회귀분석)

  • Yun, Jeong Mi;Choi, Don Jeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.77-84
    • /
    • 2015
  • The key objective of this research is to review the effectiveness of spatial regression to identify the influencing factors of spatial distribution patterns of floating population. To this end, global and local spatial autocorrelation test were performed using seoul floating population survey(2014) data. The result of Moran's I and Getis-Ord $Gi^*$ as used in the analysis derived spatial heterogeneity and spatial similarities of floating population patterns in a statistically significant range. Accordingly, Geographically Weighted Regression was applied to identify the relationship between land use attributes and population floating. Urbanization area, green tract of land of micro land cover data were aggregated in to $400m{\times}400m$ grid boundary of Seoul. Additionally public transportation variables such as intersection density transit accessibility, road density and pedestrian passage density were adopted as transit environmental factors. As a result, the GWR model derived more improved results than Ordinary Least Square(OLS) regression model. Furthermore, the spatial variation of applied local effect of independent variables for the floating population distributions.

Instability and Self-Sustained Oscillation of the Flow between Three-Dimensionally Cross-corrugated Plates (3차원 교차 주름판 내 유동의 불안정성 및 자활 진동)

  • Lee Seung Youp;Choi Young Don
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.679-682
    • /
    • 2002
  • Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical conditions as $Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of hydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy transportation.

  • PDF

Buzz Suppression of Supersonic Air Inlet by Cowl Position Modification (카울 위치변화에 의한 초음속 공기흡입구의 버즈억제)

  • Shin, Phil-Kwon;Park, Jong-Ho;Lee, Yong-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.10-17
    • /
    • 2005
  • An experimental study was conducted at a Mach number of 2.0 to investigate the buzz suppression method on an axisymmetric, external compression supersonic inlet. The inlet model has a fixed geometry with no internal contraction. The inlet configuration was altered by changing the cowling. Results show that source of buzz has been related to the existence in the flow field of velocity discontinuity across a vortex sheet which originates from a shock intersection point. With external compression inlet, buzz can be suppressed by positioning the oblique shock slightly inside or outside of the cowl.

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

Development of a Method for Rapid Analysis of DNA Hybridization (측방유동방식 신속 DNA 교잡 분석법의 개발)

  • 정동석;최의열
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.114-117
    • /
    • 2003
  • In molecular biology, it is necessary to develop an easy and rapid method to identify a specific DNA sequence. Though Southern and Northern blot techniques have been used widely for the analysis of gene structure and function, those methods are inconvenient in the points that we need to control incubation temperature, time, and other parameters to get the final result. In this study, we report a new method for the rapid analysis of specific DNA sequence with the modification of an immunochromatographic method. The lateral flow DNA analysis strip is composed of a sample pad, a nitrocellulose membrane for the separation and propagation of analytes, and an absorption pad for the generation of capillary action. Capture DNA was immobilized on the membrane by UV cross-linking and target DNA was labeled with Cy-5 for signaling. The samples containing target DNA were applied onto the sample pad, incubated for 15 min for separation, and scanned with a GSI fluorescence scanner. Though the hybridization reaction occurs in a short time without any washing steps, there appears to be little cross hybridization between the different sequences. The result showed a possibility that the new method can be used for the rapid identification of specific DNA sequence among the samples.

Study on the Estimation of Safety Zone and the Movement of Ground at the Inter-Crossing Tunnel (교차터널에서의 지반거동 및 안전영역평가에 관한 연구)

  • Kim, Woo-Sung;Yoo, Dong-Uk;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.491-502
    • /
    • 2008
  • A certain range of the original ground around the tunnel should be preserved to ensure structural safety of the tunnel when other structures are made around the tunnel, and thus this range is defined as safety zone of the tunnel. The main points to ensure the stability of an existing tunnel when constructing a new tunnel in an inter-crossing area are distance between two tunnels, size of the new tunnel, excavation method for the new tunnel, ground condition around the tunnel, and lining type of the existing tunnel etc. When the new tunnel is excavated above the existing tunnel, the existing tunnel is likely to suffer deformation at a crown zone, damage of arching effect, and live load of the new tunnel etc. On the other hand, when the new tunnel is excavated below the existing tunnel, the existing tunnel is likely to be damaged due to settlement. This study has been made on the behavior of the existing tunnel by means of model test and numerical analysis when the new tunnel is excavated below the existing tunnel. Safety zone of the tunnel was estimated by the results of strength/stress ratio obtained from numerical analysis, and the movement of ground was estimated by the model test. The results of earth pressure, ground displacements, and convergence of the tunnel obtained from model test were compared with those of numerical analysis, and show a similar trend.

Flow Analysis on Near Field of Elliptic Jet Using a Single-Frame PIV (고해상도 PIV 기법을 이용한 타원형 제트의 근접 유동장 해석)

  • Shin, Dae-Sig;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.459-466
    • /
    • 2000
  • Flow characteristics of turbulent elliptic jets were experimentally investigated using a single-frame PIV system. A sharp-edged elliptic nozzle with aspect ratio(AR) of 2 was tested and the experimental results were compared with those of circular jet having the same equivalent diameter($D_e$). The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter was about $1{\times}10^4$. The spreading rate along the major and minor axis are different remarkably. The jet half width along the major axis decreases at first and then increases with going downstream. But along the minor axis the jet width increases steadily. The elliptic jet of AR=2 has one switching points at $X/D_e=2$ within the near field. Turbulence properties are also found to be significantly different along the major and minor axis planes.