• Title/Summary/Keyword: 교차궤환제어

Search Result 5, Processing Time 0.022 seconds

Digital Linear Control System for a Magnetic Bearing System of a High Vacuum Turbomolecular Pump (고진공 터보 분자펌프용 자기베어링 시스템의 디지털 선형 제어시스템)

  • Ro, Seung-Kook;Kyung, Jin-Ho;Park, Jong-Kweon;Nam, Woo-Ho;Koh, Deug-Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.256-264
    • /
    • 2010
  • In this paper, a digital controller of magnetic bearing system for a high vacuum turbomolecular pump (TMP) is designed and examined. For stabilizing and providing damping in magnetic bearing, the digital PID controller is applied for each 5 control axes, and the inter-axis cross feedback controller is also applied to suppress low frequency vibration caused by gyroscopic moment of the rotor at high speed of rotation. The fabricated rotor-shaft has its first flexible natural frequency lower than maximum speed, about 614Hz, so the two lead filters are applied to increase damping of flexible mode. Notch filters with rotating frequency were selected to reduce vibration of the pump housing caused by unbalance load. The implemented controllers are verified by examination of frequency response and rotating test up to 40,000 rpm, which is higher than critical speed of backward flexible mode.

고진공 터보 분자펌프용 자기베어링 시스템의 디지털 제어기 설계

  • 노승국;경진호;박종권;배완성;이홍균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.167-167
    • /
    • 2004
  • 반도체 공정 등에서 10-6_10-8 TOW의 고진공 환경을 제공하기 위하여 사용되는 고진공 터보분자펌프(Turbomolecular Pump, TMP)는 다층의 회전깃을 갖는 로터를 회전시켜 분자를 배출시키는 방식을 사용하는 진공펌프이다. 이러한 고진공을 실현하기 위해서는 가장 효과적인 방법으로는 회전블레이드의 선속도를 높이는 것으로, 이는 회전로터의 직경을 크게 하거나, 회전속도를 높임으로써 얻어질 수 있다. 따라서 최근의 고진공 터보분자펌프는 대부분 25,000∼40,000RPM의 고속회전을 요구하는 것이 일반적이며 회전속도는 주로 로터 재료의 허용한도까지 적용되고 있다.(중략)

  • PDF

Design of a Precession Controller of a Magnetic Bearing System for a High Vacuum TMP (고진공 터보 분자 펌프용 자기베어링 시스템의 후방향 원추모드(Precession) 제어기 설계)

  • 배완성;노승국;박종권;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.298-303
    • /
    • 2004
  • The active magnetic bearing system for a TMP consists of four couples of magnets, five gap sensors with its amplifiers and a digital PID controller. For stabilizing and providing damping, digital PID controller is applied for each control axes and the inter-axis cross feedback controller is also applied to suppress low frequency vibration caused by gyroscopic moment of the rotor. Therefore in this paper, a digital controller of magnetic bearing for a TMP is design and examined.

  • PDF

A Differential Colpitts-VCO Circuit Suitable for Sub-1V Low Phase Noise Operation (1V 미만 전원 전압에서 저 위상잡음에 적합한 차동 콜피츠 전압제어 발진기 회로)

  • Jeon, Man-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • This paper proposes a differential Colpitts-VCO circuit suitable for low phase noise oscillation at the sub-1V supply voltage. Oscillation with low phase noise at the sub-1V supply voltage is facilitated by employing inductors as the current sources of the proposed circuit. One of the two feedback capacitors of the single-ended Colpitts oscillator in the proposed circuit is replaced with the MOS varactor in order to further reduce the resonator loss. Post-layout simulation results using a $0.18{\mu}m$ RF CMOS technology show that the phase noises at the 1MHz offset frequency of the proposed circuit oscillating at the sub-1V supply voltages of 0.6 to 0.9 V are at least 7 dBc/Hz lower than those of the well-known cross-coupled differential VCO.

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.