• Title/Summary/Keyword: 교차간섭기법

Search Result 12, Processing Time 0.016 seconds

Modeling and Digital Predistortion Design of RF Power Amplifier Using Extended Memory Polynomial (확장된 메모리 다항식 모델을 이용한 전력 증폭기 모델링 및 디지털 사전 왜곡기 설계)

  • Lee, Young-Sup;Ku, Hyun-Chul;Kim, Jeong-Hwi;Ryoo, Kyoo-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1254-1264
    • /
    • 2008
  • This paper suggests an extended memory polynomial model that improves accuracy in modeling memory effects of RF power amplifiers(PAs), and verifies effectiveness of the suggested method. The extended memory polynomial model includes cross-terms that are products of input terms that have different delay values to improve the limited accuracy of basic memory polynomial model that includes the diagonal terms of Volterra kernels. The complexity of the memoryless model, memory polynomial model, and the suggested model are compared. The extended memory polynomial model is represented with a matrix equation, and the Volterra kernels are extracted using least square method. In addition, the structure of digital predistorter and digital signal processing(DSP) algorithm based on the suggested model and indirect learning method are proposed to implement a digital predistortion linearization. To verify the suggested model, the predicted output of the model is compared with the measured output for a 10W GaN HEMT RF PA and 30 W LDMOS RF PA using 2.3 GHz WiBro input signal, and adjacent-channel power ratio(ACPR) performance with the proposed digital predistortion is measured. The proposed model increases model accuracy for the PAs, and improves the linearization performance by reducing ACPR.

Cross-layer Design of Joint Routing and Scheduling for Maximizing Network Capacity of IEEE 802.11s based Multi-Channel SmartGrid NAN Networks (IEEE 802.11s 를 사용한 스마트그리드 NAN 네트워크의 최대 전송 성능을 위한 다중 채널 스케쥴링과 라우팅의 결합 설계)

  • Min, Seok Hong;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.25-36
    • /
    • 2016
  • The goal of the SmartGrid is to maximize energy efficiency by exchanging bi-directional real-time power information with the help of ICT(Information and Communication Technology). In this paper, we propose a "JRS-MS" (Joint Routing and Scheduling for Multi-channel SmartGrid) algorithm that uses numerical modeling methods in IEEE 802.11s based STDMA multi-channel SmartGrid NAN networks. The proposed algorithm controls the amount of data transmission adaptively at the link layer and finds a high data-rate path which has the least interference between traffic flows in multi-channel SmartGrid NAN networks. The proposed algorithm improve transmission performance by enhancing network utilization. By comparing the results of performance analysis between the proposed algorithm and the JRS-SG algorithm in the previous paper, we showed that the JRS-MS algorithm can improve transmission performance by maximally utilizing given network resources when the number of flows are increasing in the multi-hop NAN wireless mesh networks.