• Title/Summary/Keyword: 교정용 미니 임플랜트

Search Result 16, Processing Time 0.025 seconds

Factors influencing the axes of anterior teeth during SWA on masse sliding retraction with orthodontic mini-implant anchorage: a finite element study (교정용 미니 임플랜트 고정원과 SWA on masse sliding retraction 시 전치부 치축 조절 요인에 관한 유한요소해석)

  • Jeong, Hye-Sim;Moon, Yoon-Shik;Cho, Young-Soo;Lim, Seung-Min;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.339-348
    • /
    • 2006
  • Objective: With development of the skeletal anchorage system, orthodontic mini-implant (OMI) assisted on masse sliding retraction has become part of general orthodontic treatment. But compared to the emphasis on successful anchorage preparation, the control of anterior teeth axis has not been emphasized enough. Methods: A 3-D finite element Base model of maxillary dental arch and a Lingual tipping model with lingually inclined anterior teeth were constructed. To evaluate factors influencing the axis of anterior teeth when OMI was used as anchorage, models were simulated with 2 mm or 5 mm retraction hooks and/or by the addition of 4 mm of compensating curve (CC) on the main archwire. The stress distribution on the roots and a 25000 times enlarged axis graph were evaluated. Results: Intrusive component of retraction force directed postero-superiorly from the 2 mm height hook did not reduce the lingual tipping of anterior teeth. When hook height was increased to 5 mm, lateral incisor showed crown-labial and root-lingual torque and uncontrolled tipping of the canine was increased.4 mm of CC added to the main archwire also induced crown-labial and root-lingual torque of the lateral incisor but uncontrolled tipping of the canine was decreased. Lingual tipping model showed very similar results compared with the Base model. Conclusion: The results of this study showed that height of the hook and compensating curve on the main archwire can influence the axis of anterior teeth. These data can be used as guidelines for clinical application.

Bone-implant contact and mobility of surface-fronted orthodontic micro-implants in dogs (성견에서 표면처리된 교정용 마미크로 임플랜트의 골 접촉률 및 동요도)

  • Park, Seung-Hyun;Kim, Seong-Hun;Ryu, Jun-Ha;Kang, Yoon-Goo;Chung, Kyu-Rhim;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.416-426
    • /
    • 2008
  • The purpose of this study was to evaluate the mobility and ratio of the bone-implant contact (BIC) of a sandblasted, large grit and acid-etched (SLA) orthodontic micro-implant. Methods: Ninety-six micro-implants (48 SLA and 48 machined) were implanted in the upper and lower buccal alveolar bone, and palatal bone of four beagle dogs. Two weeks after surgery, orthodontic force (150-200 g) was applied. Two beagles were sacrificed at 4-weeks and the other two at 12-weeks. Histomorphometric comparisons were made between the SLA experimental group and the machined micro-implant as a control group to determine the ratio of contact between the bone and implant. Micro-implant mobility was also evaluated using $Periotest^{(R)}$. Results: Periotest values showed no statistically significant difference in the upper alveolar and palatal bone between groups except for the lower buccal area. BIC in the upper buccal area showed no significant difference between groups both at 4-weeks and 12-weeks. However, both the groups showed a significant difference in BIC ratio in the rest of the experimental areas between 4 weeks and 12 weeks. The experimental group showed active bone remodeling around the bone-implant interface compared to the control group. Conclusions: There were significant differences in the BIC and the Periotest values between the surface-treated and machined micro-implants according to bone quality in the early stage.

Effect of cutting flute length and shape on insertion and removal torque of orthodontic mini-implants (교점용 미니 임플랜트의 cutting flute의 길이 및 형태에 따른 식립 및 제거 토크의 비교)

  • Yun, Soon-Dong;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.95-104
    • /
    • 2009
  • Objective: The purpose of this study was to evaluate the effect of length and shape of cutting flute on mechanical properties of orthodontic mini-implants. Methods: Three types of mini-implants with different flute patterns (Type A with 2.6 mm long flute, Type B with 3.9 mm long and straight flute, Type C with 3.9 mm long and helical flute) were inserted into the biomechanical test blocks (Sawbones Inc., USA) with 2 mm and 4 mm cortical bone thicknesses to test insertion and removal torque. Results: In 4 mm cortical bone thickness, Type C mini-implants showed highest maximum insertion torque, then Type A and Type B in order. Type C also showed shortest total insertion time and highest maximum removal torque, but Type A and B didn't showed statistically significant difference in insertion time and removal torque. In 2 mm cortical bone thickness, there were no significant difference in total insertion time and maximum removal torque in three types of mini-implants, but maximum insertion torque of Type A was higher than two other Types of mini-implants. Conclusions: Consideration about length and shape of cutting flute of mini-implant is also required when the placement site has thick cortical bone.

Three dimensional analysis of tooth movement using different sizes of NiTi wire on NiTi scissors-bite corrector (NiTi scissors-bite corrector의 와이어 굵기에 따른 3차원적 치아 이동 양상)

  • Jeon, Hyun-Ju;Park, Sun-Hyung;Jung, Sang-Hyuk;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.39 no.1
    • /
    • pp.43-53
    • /
    • 2009
  • Objective: The purpose of this study was to compare the difference in three dimensional tooth movement using three different wire sizes($0.018{\times}0.025-in,\;0.016{\times}0.022-in$ 0.016-in) on a NiTi scissors-bite corrector. Methods: Computed tomography(CT) images of the experimental model before and after tooth movement were taken and reconstructed into three dimensional models for superimposition. The direction and the amount of tooth movement were measured and analyzed statistically. Results: The lingual and intrusive movements of the crown of the maxillary second molar were increased as the size of the NiTi wire increased. The roots of the maxillary second metals moved buccally except for the 0.016-in group. The intrusive movement of the roots of the maxillary second molars was increased as the size of the NiTi wire increased. Due to the use of orthodontic mini-implants, anchorage loss was under 0.2 mm on average. Conclusions: The $0.018{\times}0.025-in$ NiTi wire was most effective in lingual and intrusive movement of the maxillary second molar which was in scissors-bite position. Indirect skeletal anchorage with a single orthodontic mini-implant was rigid enough to prevent anchorage loss.

Effects of orthodontic mini-implant position in the dragon helix appliance on tooth displacement and stress distribution: a three-dimensional finite element analysis (교정용 미니임플랜트 식립 위치에 따른 dragon helix의 효과에 대한 유한요소해석)

  • Kim, Min-Ji;Park, Sun-Hyung;Kim, Hyeon-Seong;Mo, Sung-Seo;Sung, Sang-Jin;Jang, Gang-Won;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.41 no.3
    • /
    • pp.191-199
    • /
    • 2011
  • Objective: The purpose of this study was to investigate the stress distribution on the orthodontic mini-implant (OMI) surface and periodontal ligament of the maxillary first and second molars as well as the tooth displacement according to the OMI position in the dragon helix appliance during scissors-bite correction. Methods: OMIs were placed at two maxillary positions, between the first and the second premolars (group 1) and between the second premolar and the first molar (group 2). The stress distribution area (SDA) was analyzed by three-dimensional finite element analysis. Results: The maximal SDA of the OMI did not differ between the groups. It was located at the cervical area and palatal root apex of the maxillary first molar in groups 1 and 2, respectively, indicating less tipping in group 2. The minimal SDA was located at the root and furcation area of the maxillary second molar in groups 1 and 2, respectively, indicating greater palatal crown displacement in group 2. Conclusions: Placement of the OMI between the maxillary second premolar and the maxillary first molar to serve as an indirect anchor in the dragon helix appliance minimizes anchorage loss while maximizing the effect on scissors-bite correction.

REMOVAL TORQUE AND BONE FORMATION OF ORTHODONTIC MINISCREW IMPLANT (교정용 미니스크류 임플랜트의 제거회전력 및 골형성에 관한 연굴)

  • Yun, Young-Kuk;Ryu, Jae-Jun;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.492-505
    • /
    • 2007
  • Statement of problem: An orthodontic miniscrew implant has been used as a skeletal anchorage for orthodontic treatment. However, any relation among the influence of the cortical bone, morphologic differences of orthodontic miniscrew implants and new bone formation hasn't been made clear yet. Purpose: The purpose of this study was to evaluate whether the orthodontic miniscrew implant could work as an intraoral skeletal anchorage immediately and stably for orthodontic treatment after insertion of it. Material and methods: Two types of orthodontic miniscrew implants were used in this experiment; tapered type and straight type. One hundred and sixty eight orthodontic miniscrew implants were inserted into the tibiae of 21 rabbits and sacrificed on 3, 7, 11, 14, 21 and 28days later after insertion of them to study removal torque values and histologic and histomorphometric analyses. Results: The results were as follows. 1. The removal torque values of the tapered type were higher than those of the straight type in all groups(p<0.05). 2. There wasn't any distinguishing differences between the tapered type and the straight type about the new bone formation percentage. 3. The removal torque values for both the tapered type and the straight type were gradually decreased at early stages of the test but started to increase at the 7 days group of the straight type and the 11 days group of the tapered type. 4. New bone formation percentage was increased gradually for both the tapered and the straight types as time passed(p<0.05). 5. It was found that the tapered type showed lower values in the cortical bone about both the maximum equilibratory stress distribution and the maximum principal stress distribution than the straight type in linear finite elements analysis. Conclusion: According to the research, the removal torque values were decreased at 7 days group of the tapered type and 11 days group of the straight type after the insertion of the orthodontic miniscrew implants in tibiae of rabbits. Considering the human bone activity, it is better to apply the orthodontic force $3{\sim}4$ weeks later than to apply it immediately after the insertion of orthodontic miniscrew implants. Considering that general orthodontic force is about $250{\sim}500$ grams, the tapered type can be worked as a stable skeletal anchor age in an orthodontic treatment even if the orthodontic force is applied on it immediately after the insertion of it.