• Title/Summary/Keyword: 교량 상부구조

Search Result 228, Processing Time 0.027 seconds

A Study on the Shear Fatigue Performance of Elastomeric Bearings of a Doublefold Elastomeric Layer (고무의 겹침제작 여부에 따른 탄성받침의 전단피로특성 연구)

  • Yoon, Hye-Jin;Kwahk, Im-Jong;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.69-72
    • /
    • 2008
  • Bridge bearings are devices absorbing the displacements of the superstructure. Elastomeric bearings used generally as bridge bearings absorb the displacements of the superstructure using their rubber characteristics. Elastomeric bearings should make sure their shear fatigue performance not to impede the durability of bridge system. In this paper shear fatigue tests were performed and stiffness were measured through the shear fatigue tests. Tests results show the measured stiffness of elastomeric bearings have no specific tendency. This paper found that elastomeric bearings show bad shear performance or fail early if elastomeric bearings are manufactured with a doublefold elastomeric layer.

  • PDF

활동형 지진격리 시스템을 적용한 지진격리 교량의 비선형 유한요소해석(S/W:ABAQUS, H/W:CrayC94)

  • 음성우
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.38-45
    • /
    • 1998
  • 최근 국내외에서 활발히 개발되고 있는 지진격리 시스템은 원자력 발전소, 교량, 중요한 공공건물 등의 지진피해를 최소화하기 이하여 널리 적용되고 있다. 그리고 다른 방법에 비하여 경제성 및 효율성이 우수하기 때문에 관련 연구 및 응용이 활발히 진행되고 있다. 이에 따라 국내외에서 격리시스템의 비선형성과 구조물의 불연속성을 고려한 지진격리 구조물의 해석을 통한 거동을 규명하는 연구가 과거 수년간 활발히 진행되어 왔다. 당사(금호건설)는 상부하중 지지능력과 감쇠능력이 우수한 지진격리장치를 개발하였으며 지진격리장치를 설치한 교량의 지진해석을 수행하여 본 지진격리 시스템의 이론적 성능을 파악하였다. 본 수치해석은 CrayC94에 탑재된 비선형 해석에 뛰어난 것으로 알려진 ABAQU를 이용하였다. 본 지진격리 시스템은 적층고무받침(Laminated Rubber Bearing)과 PTFE 미끄럼받침으로 구성되어 있으며, 적층고무받침은 주로 복원력을 제공하며 PTFE 미끄럼받침은 상부하중을 지지하며 마찰감쇠를 제공하여 에너지를 소산하는 역할을 한다. 본 수치해석에서는 선형스프링과 마찰요소를 이용하여 각각을 모형화하였다. 개발된 지진격리 시스템이 주로 사용될 상판자중이 무거운 다경간 연속 PC Box Girder교를 모델교량으로 선택하여 해석을 수행하였으며 수치해석에 사용된 격리시스템의 사전에 수행된 동특성 실험결과를 활용하였다. 이러한 해석을 통하여 이론적 효율성을 파악할 수 있었다.

  • PDF

A Study of Structural Behavior Analysis of Inegral and Semi-Integral Hybrid Slab Bridge (일체식 및 반일체식 복합슬래브 교량의 구조거동 분석에 관한 연구)

  • Choi, Young-Guk;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • Girder bridges and slab bridges are equipped with a system consisting of a flexible joint unit, support, inverted T shaped abutment, and a separate connecting slab structure. These systems have problems such as an increase in cost due to frequent breakage of the expansion joints and a decrease in durability due to a structure with low moment redistribution. To improve these problems, propose Inegral and Semi-Integral Hybrid Slab Bridge and examine the safety through structural analysis. As a result of the review, Inegral and Semi-Integral Hybrid Slab Bridge was the section stiffness is small. but it is confirmed that the structural safety, ductility and flexibility are higher than existing bridges because the moment redistribution and the force transmission are surely performed.

A Study on the Integrity Assessment of Bare Concrete Bridge Deck based on the Attenuation of Radar Signals (레이더 신호의 감쇠특성을 고려한 일체식 콘크리트 교량 바닥판의 상태평가 방법 고찰)

  • Rhee, Ji-Young;Choi, Jae-Jin;Kim, Hong-Sam;Park, Ko-Eun;Choi, Myeong-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.84-93
    • /
    • 2016
  • The signal characteristic of radar wave on concrete decks is determined by the attenuation of the radar due to the conversion of EM(Electromagnetic) energy to thermal energy through electrical conduction, dielectric relaxation, scattering, and geometric spreading. In this study, it is found that the attenuation of radar signal received on top rebars in bare deck concrete with 2 way travel time shows a general decreasing linear trend because of its same relative permittivity and conductivity. The radar signal after depth-normalization, can then be interpreted as being principally influenced by the content of chlorides penetrating cover concrete, which caused corrosion of rebars in bridge decks.

Comparison of Efficiency by Span in Various Railway Bridge Types (철도교량형식의 경간에 따른 효율성 비교연구)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.7
    • /
    • pp.511-517
    • /
    • 2014
  • The superstructure type of the railway bridge in our country, is mainly classified into the box girder and the I-type girder. The box girder is widely used in the high speed railway bridge because of the safety due to dynamic behavior. The I-type girder is used in the conventional railway bridge, and is also divided into the general type and the composite type, and the newly modified types have been developed. According to the current railway bridge design code, the girder design by the span length in various railway bridge types are performed in this study. The suitable girder height by the span length are analyzed, and the comparative analysis of the structural efficiency and the economical efficiency is carried out. From this study, the composite type girder is appeared the good result in respect of the structural efficiency. However, in the economical aspect, the general I-type girder is required less cost than the other types.

Evaluation of Characteristics on Negative Reactions of Simply Supported Curved Box Girder Bridges with Elastomeric Bearings (탄성받침을 가지는 단경간 곡선 강박스거더 교량의 부반력 특성평가)

  • Kim, Kyungsik;Lee, Heejeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Horizontally curved bridges are subjected to torsional loads by their vertical dead loads only as well as eccentric loads, which cause negative reactions at supports. In this paper, effects of bridge curvature on vertical reactions at supports are investigated for 48.8 m length simple span steel box girder bridges with elastomeric bearings by varying curvature angle from 0.49 to 1.35 rad. In order to expect magnitude and direction of reactions including possibility of negative reactions, reaction evaluation equations have been analytically developed by separating a superstructure of curved bridge into independent components. Concrete slabs and bottom flanges in steel box section are assumed geometrical annular sectors in area dimension, and top flanges and webs that have very narrow projected areas are assumed geometrical arcs in line dimension. Proposed equations have relatively simple forms and prediction values are on very good agreement with those from finite element analyses by difference of 1% order.

Cable-supported Bridge Safety Inspection Blind Spot Elimination Technology using Drones (드론을 활용한 케이블지지교량 안전점검 사각지대 해소 기술)

  • Sungjin Lee;Bongchul Joo;Jungho Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • In the case of special bridges whose superstructure is supported by cables, there are many blind spots that are difficult to access without special equipment and personnel. As a result, there are difficulties in the safety inspection of special bridges. The purpose of this study is to review the inspection blind spots of cable-supported bridges such as cable-stayed bridges and suspension bridges, and to study ways to eliminate blind spots using drones. To this end, the cables, stiffened girder, and pylons of the cable-stayed bridge located in the sea were inspected using drones. Through this study, it was confirmed that external safety inspection of special bridges that are difficult for inspectors to access is possible using drones. In particular, drone inspection to check the external condition and damage of the pylon, which is a blind spot for inspection of special bridges, is a very effective safety inspection method.

Seismic Response Characteristics of Domestic Cable-supported Bridges Due to Gyeongju Earthquakes: Case Study (경주 지진에 대한 국내 공용 중 케이블지지교량의 지진응답특성: 사례 연구)

  • Park, Sung Woo;Lee, Seung Han;Choi, Gahee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • This study presents the seismic response characteristics of domestic cable-supported bridges due to 3 earthquakes with magnitudes of 5.1, 5.8, and 4.5 in Richter scale, which occurred around Gyeongju region in 2016. The seismic acceleration response signals, recorded by the seismic acceleration sensors at the free field near bridge and designated positions on bridge, are utilized to characterize the seismic responses of structural elements of cable-supported bridges. The dynamic behaviors of bridges are presented through Fourier transform of acceleration time history. Using the peak accelerations normalized by those at the free fields, amplification effects on the tops of the pylons are analyzed comparatively bridge by bridge. Using aforementioned analyses, the necessity of development on the creteria of alert levels is discussed for the earthquake disaster response of cable-supported bridges.

Seismic Performance of Bridges with the Modeling of Expansion Rocker Bearings (라커베어링 모델에 따른 교량의 지진거동)

  • Choi, Eunsoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.755-763
    • /
    • 2002
  • Multispan simply supported bridges and multispan continuous bridges take a large portion of bridges in Central and Southeastern United Sates. The superstructure of the bridges are supported by steel rocker bearings. In general, the rocker bearings are modeled with ideal rollers or Coulomb fricition in seismic analysis. However, the rocker bearings have rocking action on pintles after rolling some distance. This rocking action may have considerable effect on the seismic performance of bridges. This study compares the effect of expansion rocker bearings models on a multispan simply supported and a multispan continuous bridge. Since the ideal roller model produces larger responses than the rocking model, its use is undesirable. However, the fricition and hardening model does not have much difference from the responses of the rocking model. In addition, the use of the tow models is convenient in seismic analyses of bridges. Although the rocking model can obtain more exact responses, its behavior is complicated and it may induce the conversion problem in time history analysis because it includes the abrupt changing of stiffiness. The friction and hardening model of expansion rocker bearings is therefore recommended in sesismic analysis.