• Title/Summary/Keyword: 교량 부재

Search Result 317, Processing Time 0.026 seconds

Suggestion of Flexural Strengthening Ratio of NSM Strengthened Concrete Railroad Bridge based on Probability and Reliability (확률.신뢰도에 기초한 표면매립보강(NSM) 콘크리트 철도교의 휨보강비 산정)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Ki-Hong;Park, Ji-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.121-124
    • /
    • 2008
  • The purpose of this study is to evaluate the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate. The railroad bridge is usually under vibration and impact in service state. Therefore, it is important that the effective strengthening performance must be exhibited under the service loading is acted. To widely apply the NSM method for the concrete railroad bridge in field, it needs that reasonable strengthening parameter such as strengthening ratio has to be investigated and evaluated when the strengthening design is conducted. In this study, to suggest more reasonable strengthening ratio, material and geometrical uncertainty was considered and applied by Monte Carlo Simulation (MSC) technique. Lastly, the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate was evaluated by using the limit state function with the target reliability index.

  • PDF

Analysis For Effective Moment For Iinertia For Corrugated Steel-Concrete Composite Deck with I-beam Welded (교량용 I형강 접합 절곡강합성 바닥판의 휨강성 분석)

  • Son, Chang-Du;Park, Jun-Myung;Han, Kyung-Bong;Kim, Jun-Won;Lee, Jae Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.209-212
    • /
    • 2008
  • Corrugated steel-concrete composite deck with I-beam welded is lighter and has higher load carrying capacity than RC slabs due to an I-beam embedded in the corrugated deck. The methods suggested from ACI and design standard of roadway bridge are used to evaluate effective moment inertia of RC structures. This paper presents evaluation and application of effective moment inertia for corrugated steel-concrete composite deck with I-beam welded by using the methods suggested from design standard of roadway bridge, ACI and CEB-FIP MC-90. In order to evaluate effective moment inertia, a series of flexural experiments were carried out. Five beams were built and the parameters considered in the experiments were studs, shape of the sections and connections of the beams. By using the aforementioned methods, effective moments of inertia was calculated and they were compared with the experimental results. As a result, The method suggested from CEB-FIP MC-90 yielded more satisfactory agreement than that from ACI. It was found that the beam has studs showed high load-carrying capacity and high effective moment of inertia.

  • PDF

The prediction for drying shrinkage of self-consolidating concrete using lightweight aggregate (경량골재를 사용한 자기충전 콘크리트의 건조수축률 예측)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.341-344
    • /
    • 2008
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied to structures such as long-span bridge and high rise building. However, the lightweight concrete requires specific mix design method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the mix design method of self-consolidating concrete for the lightweight concrete. Therefore experimental tests were performed as such mechanical properties(compressive strength, dry density and structural efficiency) of concrete and dry shrinkage according to ACI committee 209.

  • PDF

A study on the effect of ground vibration induced by vibrohammer and RCD on adjacent subway tunnel (바이브로 해머 및 RCD 공법 적용시 기존터널에 미치는 진동영향해석)

  • Huh, Young;Nam, Kee-Chun;Kim, Tae-Hyung;Bang, Jin-Ho;Kwak, Chang-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • This paper presents the effect of ground vibration induced by vibrohammer and RCD on adjancent subway tunnel performance using FDM program. Firstly, the stability criteria for structures near vibration source were proposed according to existing data, then peak particle velocity around tunnel was estimated based on detailed information of vibrohammer and existing formula for dynamic loads through numerical analysis. The peak particle velocity induced by RCD bit rotation was also estimated using surveyed data and formula. Consequently, displacement and stress responses were obtained at crown, shoulder and spring line and compared with the criteria to check stability of tunnel.

  • PDF

An Estimation of the Fatigue Behavior on the Cruciform Type Specimen by Variation of the Stress Ratio (응력비 변화에 따른 십자형 접합부의 피로거동 평가)

  • 김태봉;서상구;우상익
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.140-145
    • /
    • 2000
  • This paper was composed with fatigue test of the cruciform specimens, as load carrying and non-load carrying type. It also has performed computational analyses for geometric condition of the fillet welding bead. As test results, the effect of stress ratio in the specimen was insignificant. Stress ranges were varied with R=0.1~0.2. The fatigue cracks that were found in the load carrying type specimens and most specimens welded with contact were developed at the end of welds. The fatigue strength of specimen that have fractured in maternal plate was found about ${\Delta}\sigma_c$=63.5MPa. It's about 24% less than that of the non-load carrying type specimens having about ${\Delta}\sigma_c$=83.8MPa. A category of the Fatigue design specifications which provide for cruciform details was defined grade C as a stress of the maternal member. And then, the fatigue strength to be transformed into the maternal stress was found about 78.27 MPa, it tends to be less than that of allowable fatigue strength.

  • PDF

Experimental Investigations on the Flexural Behavior of One-Way Concrete Slabs Reinforced with GFRP Re-Bar Bundle (유리섬유 보강 플래스틱 Re-Bar 다발로 보강된 1방향 콘크리트 슬래브의 휨거동에 관한 실험적 연구)

  • 윤순종;김병석;유성근;정재호;정상균
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • In recent years, the investigation on the development of fiber reinforced plastic(FRP) Re-Bar has been greatly increased due to the attractive physical and mechanical properties of FRP. The primary reason of such a tendency is in the fact that it does not ordinarily cause durability problems such as those associated with steel reinforcement corrosion. This study is an experimental investigation on the flexural behavior of one-way concrete slabs, which can be used to construct bridge deck, reinforced with GFRP Re-Bar bundle. The tensile tests of GFRP Re-Bar produced by domestic industry and third point bending tests of one-way slab specimens reinforced with GFRP Re-Bar bundle are peformed. For all slab specimens, load-deflection relations are predicted by using the ACI committee 440 and the results are compared with experimental ones. In order to establish the design criteria or guidelines of concrete flexural member reinforced with FRP Re-Bar, it is needed to evaluate the serviceability limit state as well as the strength limit state.

Initial Equilibrium State Analysis of Cable Stayed Bridges Considering Axial Deformation (축방향 변형을 고려한 사장교의 초기평형상태 해석)

  • Kim, Je Choon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.539-547
    • /
    • 2002
  • The study proposed the initial equilibrium state analysis method that considers axial deformation, in order to accurately determine the initial shape of a cable-stayed bridge. Sepecifically, the proposed method adopted the successive iteration method. In order to evaluate appropriate initial cable force introduced in the initial equilibrium state analysis, parametric studies were performed and a useful linear analysis method proposed. The geometrically nonlinear static behaviors of cable-stayed bridges were considered, using three-dimensional frame element and elastic catenary cable element. The usefulness and applicability of the analytic method proposed in this study were demonstrated using numerical examples, including a real cable-stayed bridge. The algorithm, is applicable in cases wherein axial deformation is not adopted in the fabrication camber, or final cable force is adjusted to eliminate construction and fabrication errors occurring during construction.

Behaviors of Joints with Perfobond Rib Shear Connectors in Steel-PSC Hybrid System (Perfobond Rib을 적용한 강-PSC 혼합구조 연결부의 거동 평가)

  • Kim, Sang Hyo;Lee, Chan Goo;Yoon, Ji Hyun;Won, Jeong Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.647-657
    • /
    • 2009
  • This paper studies the behavior of joints in steel-PSC (prestressed concrete) hybrid beams, which is necessary for the application of hybrid beams to spliced girder bridges, and proposes a new type of joint with improved construction convenience and structural behavior. In the proposed joint, perfobond rib shear connectors are attached to the upper and lower plates, which are expanded from the steel girders and located between the steel girder and the PSC girder. The experimental tests were performed on hybrid beams with the suggested joint. The results showed that all the beams had similar ultimate strengths and failure modes, due to the failure of their PSC parts. The composite action of the perfobond ribs was verified by examining the initial stiffness and cracks of the test beams. In addition, the test beams showed a higher degree of ultimate strength than the beams with stud shear connectors in the joints that had been previously studied. Thus, the proposed joint is effective for the steel-PSC hybrid beam.

Flexural Behavior Characteristics of Steel I-Beam Strengthened by the Post-tensioning Method on the Field Experiment (현장실험을 통한 외부 후긴장 Steel I-Beam의 휨 거동 특성)

  • Cho, Doo-Yong;Park, Dae-Yul;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Recently, the externally prestressed unbonded steel I-beam bridges have been increasingly built. The mechanical behavior of prestressed steel I-beams which are with external unbonded tendon is different from that of normal bonded PSC beams in a point of that the slip of tendons at deviators and the change of tendon eccentricity occurs, when external loads are applied in external unbonded steel I-beams. The concept of prestressing steel structures has not been widely considered, in spite of long and successful history of prestressing concrete members. In this study, The field experiment on prestressed steel I-beams has been performed in the various aspects of prestressed I-beam including the tend on type and profile.

A Study on the Improvement of the Steel Pylon Base Design Using Nonlinear FEM Analysis (비선형 FEM 해석을 이용한 기존 강재 주탑기부 설계의 개선방안 연구)

  • Jung, Soo-Hyung;Park, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2014
  • In this study nonlinear FEM analysis for steel pylon base of a cable supported bridge is performed in order to compare the results of Akashi-Kaikyo bridge's design specification established in 1970. Due to convenience of its application, the Akashi grand bridge's design specification has been applied to the base design of cable stayed bridges. It has been using linear spring in order to model prestressed high tensioned bars between steel pylon bottom plates and the base concrete. However, the results of nonlinear FEM analysis revealed that the Akashi-Kaikyo bridge's design specification has various problems in the analysis of the steel pylon base. And the steel pylon base has various complex members connecting with each other, and it is main member to resist against the wind load or the earthquake load. Therefore, the nonlinear FEM analysis has to be conducted in order to predict the behavior of steel pylon base exactly. Also, the nonlinear FEM analysis is more reasonable for the load and resistant factor design.