• Title/Summary/Keyword: 교량 거더

Search Result 447, Processing Time 0.026 seconds

Structural Performance Test of A Rahmen Bridge with Inverted-T Girder (Inverted-T형 거더 라멘교의 구조성능 시험)

  • Lee, Yeon-Hun;Park, Yong-Kwon;Yang, Dong-Wook;Lim, Hyeon-Sik;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.99-100
    • /
    • 2010
  • The objective of this research aims at improving the structural and economical efficiency of small and medium-span reinforced concrete bridges by importing the Inverted-T girders (hereinafter, called as IT). This new Rahmen bridge with IT girders has an advantage over minimizing the construction process which could cause environmental pollution and traffic congestion. Especially it is thought that this new composite bridge can give better aesthetic and view than existing old bridges, and can be a good construction method to solve labor shortage problems due to coming aging society. Therefore, this IT method should be one of very effective construction technologies to improve the constructibility and to reduce the construction cost.

  • PDF

Fatigue Analysis of Prestressed Concrete Composite Girder Bridges (프리스트레스트 콘크리트 합성거더 교량의 피로해석)

  • 김지상;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.135-144
    • /
    • 1993
  • A fatigue analysis procedure for prestressed concrete composite girder bridges is established, which includes the time-dependent effects of component materials. The procedure can take into account the movement of neutral axis depth as crack develops and give quite good agreement with experimental results available. It is also assured that Korean Standard prestressed concrete composite girder has enough fatigue resistance. The procedure in this paper gives a way to express the fatigue capacity of prestressed concrete beams in the form of S-N curve, which can be utilized under variable amplitude fatigue load.

A Parametric Study on Intermediate Diaphragms of Steel-Box-Girder Bridges (강박스 거더교의 내부 다이아프램에 관한 매개변수 연구)

  • Park, Nam Hoi;Lim, Da Soo;Cho, Sun Kyu;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.231-239
    • /
    • 2003
  • Many box girder bridges have been constructed during the past several decades due to their large bending and torsional rigidities as well as aesthetic considerations. However, box girders have shortcoming in that the cross section distorts under an eccentric loading and warps out of the section plane. Therefore, in order to reduce distortional stresses such as distortional warping and transverse bending normal stresses, diaphragms were generally installed in the box girders. Shapes of the diaphragms in steel-box-girder bridges constructed up to date were solid-plate, frame, and truss types. The objectives of this study using parametric study were to evaluate the appropriate stiffness ratio of intermediate diaphragms and then to propose the effective spacing and numbers of intermediate diaphragms based on the evaluated stiffness ratio. Target bridges for this study were straight continuous span bridges with a single-cell steel box section. The parameters for the parametric study were the shape of box section, the span numbers, the equivalent span length, the stiffness of intermediate diaphragms, and the spacing of intermediate diaphragms. From the results of the parametric study, the effective spacing and numbers as well as the stiffness ratio of the intermediate diaphragms will be presented.

Analytical and Experimental Studies on Partially Composite of Steel-Plate Girder Bridges Using Slab Anchors (바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험 연구)

  • Han, Sang Yun;Park, Nam Hoi;Yoon, Ki Young;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.325-332
    • /
    • 2004
  • Cross sections of steel-plate girder bridges are divided into three cross sections of non-composite, partially composite, and fully composite sections, according to their composite characteristics. The Korean provision for the partially and fully composite sections specifies general usage of the stud of shear connectors, whereas the one for the non-composite section specifies empirical usage of slab anchors. However, the actual behavior of the cross sections of steel-plate girder bridges using slab anchors is close not to the non-composite action, but to the partially composite action. Therefore analytical and experimental studies on partial composites of steel-plate girder bridges using slab anchors are performed in this study. Intial stiffness of the slab anchor is obtained by the experimental study for the first time, and the composite characteristic of simple-span and two-span continuous steel-plate girder bridges is investigated by the finite element analyses for the second time. Based on the obtained initial stiffness, the reduction effect of tensile stresses in the concrete-slab on the intermediate support of the continuous bridge is also considered herein.

Evaluation on Bearing Capacity of End Girder Member with Local Corrosion (지점부 부재의 부식손상에 따른 강거더 단부 지압강도 평가)

  • Ahn, Jin Hee;Lee, Won Hong;Kim, In Tae;Jeong, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.74-82
    • /
    • 2017
  • Localized corrosions damages in their structural sections can be occurred affected by installed environment conditions with high temperature as near the coastline and humidity or their poor maintenance situation. In bearing supports of steel bridges, especially, lower web and vertical stiffener in end girder support can be easily corroded because of relatively higher humidity due to the narrow space in the end of girder and the wetted accumulated sediments affected by rain water or antifreezing admixture leaked from expansion joint. It can be related to change in their structural performance. In this study, thus, bearing strength test specimens were fabricated considering corrosion damage in the web and vertical stiffeners and the change in their bearing strengths were experimentally evaluated. From the test results, localized corrosion damage of structural members in the end girder affected the bearing strength of end girder support, especially, localized corrosion damage of the vertical stiffener relatively highly affected their bearing strengths.

The Evaluation of Structural Behavior of Hollowed PPC Girder Using Lightweight Aggregate Concrete (경량골재 콘크리트를 활용한 중공 PPC 거더의 구조거동 평가)

  • Lho, Byeong Cheol;Lee, Kyung Su;Kim, Ik Sang;Cha, Kwang Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.75-81
    • /
    • 2011
  • Recently prestressed concrete bridges are generally used instead of reinforced concrete. PSC is more durable than RC because it can reduce crack problems, reinforcement corrosion, leakage and carbonation etc. And also PSC is more effective because there is no crack in tension area, and the entire concrete section is considered in section analysis. And it can reduce section size because vertical component by prestressing force can reduce the shear force. However, using high strength concrete can increase the self weight of bridge because of it's higher density. So the hollowed PPC girder with light weight aggregate can be a alternative. In this study the hollowed PPC girder with light weight aggregate is designed and the performance of hollowed PPC girder is evaluated by experimental tests as well as numerical analysis. As a result, The hollowed PPC girder of light aggregate behaved fully elastically under service load of 110kN, and the plastic behavior was showed after elastic behavior through experimental test, and it can be also estimated by numerical analysis.

Design and Construction of Twin Steel Girder Bridge using the Precast Concrete Full depth deck (프리캐스트 바닥판을 적용한 소수거더교의 설계 및 시공)

  • Kim, In-Gyu;Ma, Hyang-Wook;Oh, Hyun-Chul;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.137-140
    • /
    • 2008
  • Minimizing the girder number and appling the long span deck of plate girder bridge is the main factors in the practical and economic design of the Twin Steel Girder Bridge. Therefore, it is important to verify the ability of the long span concrete deck. In this paper, to improve the problem, the precast concrete full depth deck has been used instead of cast-in-place concrete deck. The precast concrete full depth deck having longitudinal and transverse prestress is efficient to design of the long span concrete slabs. This paper introduces the design concept of Twin Steel Bridge using the precast concrete full depth deck and applied design case.

  • PDF

Seismic Fragility Analysis based on Material Uncertainties of I-Shape Curved Steel Girder Bridge under Gyeongju Earthquake (강재 재료 불확실성을 고려한 I형 곡선 거더 교량의 경주 지진 기반 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Ho-Young
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.747-754
    • /
    • 2021
  • Purpose: Seismic safety evaluation of a curved bridge must be performed since the curved bridges exhibit the complex behavior rather than the straight bridges, due to geometrical characteristics. In order to conduct the probabilistic seismic assessment of the curved bridge, Seismic fragility evaluation was performed using the uncertainty of the steel material properties of a curved bridge girde, in this study. Method: The finite element (FE) model using ABAQUS platform of the curved bridge girder was constructed, and the statistical parameters of steel materials presented in previous studies were used. 100 steel material models were sampled using the Latin Hypercube Sampling method. As an input ground motion in this study, seismic fragility evaluation was performed by the normalized scale of the Gyeongju earthquake to 0.2g, 0.5g, 0.8g, 1.2g, and 1.5g. Result: As a result of the seismic fragility evaluation of the curved girder, it was found that there was no failure up to 0.03g corresponding to the limit state of allowable stress design, but the failure was started from 0.11g associated with using limit state design. Conclusion: In this study, seismic fragility evaluation was performed considering steel materials uncertainties. Further it must be considered the seismic fragility of the curved bridge using both the uncertainties of input motions and material properties.