• Title/Summary/Keyword: 교각코핑부

Search Result 9, Processing Time 0.019 seconds

A Method to Reduce Reinforcements Embedded in Coping of Concrete Piers (콘크리트교각 코핑부 철근배근량 저감방안)

  • Park, Sung-Hyun;Cho, Jae-Yeol;Kim, Young-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.121-122
    • /
    • 2009
  • Currently, the design methods for coping of concrete piers predict over-reinforcements. In this study comparison and analysis of internal and external design codes is performed. Non-linear analysis using FEA and strut-tie model was done to reduce reinforcements embedded in coping of concrete piers.

  • PDF

Precast Concrete Copings for Precast Segmental PSC Bridge Columns : I. Development and Verification of System (프리캐스트 세그먼트 PSC 교각의 조립식 코핑부 : I. 시스템 개발 및 검증)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.463-473
    • /
    • 2010
  • The purpose of this study was to investigate the performance of precast concrete copings for precast segmental PSC bridge columns. The proposed system can reduce work at a construction site and makes construction periods shorter. The precast concrete copings provides an alternative to current cast-in-place systems, particularly for areas where reduced construction time is desired. A model of precast concrete copings was tested under quasistatic monotonic loading. As a result, proposed precast coping system was equal to existing cast-in-place system in terms of required performance. In the companion paper, the experimental and analytical study for the performance assessment of precast concrete copings for precast segmental PSC bridge columns is performed.

Strut-Tie Model Approach Associated with 3-Dimensional Grid Elements for Design of Structural Concrete - (II) Validity Evaluation (3차원 격자요소를 활용한 콘크리트 구조부재의 스트럿-타이 모델 설계 방법 - (II) 타당성 평가)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.437-446
    • /
    • 2014
  • In this study, the ultimate strengths of 13 slab-column joints and 51 torsional beams were evaluated to verify the validity of the strut-tie model approach presented in the companion paper. In addition, the design of the bridge pier subjected to multiple load combinations with longitudinal and lateral loads was conducted. The analysis results were compared with those by the provisions of BS 8110, ACI 318, and AASHTO-LRFD. The design results of the bridge pier were also compared with those by the provisions of ACI 318's sectional design method and AASHTO-LRFD's strut-tie model method.

Precast Concrete Copings for Precast Segmental PSC Bridge Columns : II. Experiments and Analyses (프리캐스트 세그먼트 PSC 교각의 조립식 코핑부 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.475-484
    • /
    • 2010
  • The purpose of this study is to investigate the inelastic behavior of precast concrete copings for precast segmental PSC bridge columns and to provide the details and reference data. Twelve one-fourth-scale precast concrete copings were tested under quasistatic monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast concrete copings for precast segmental PSC bridge columns and presents conclusions based on the experimental and analytical findings.

고속철도 PC Box교량 잭업을 위한 교각코핑부 안정성 검토

  • 강진욱;이명섭;김진욱
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2004
  • 경부고속철도 제7-2공구 현장은 충청북도 영동군 심천면 초강리에서 영동읍 화신리에 이르는 총연장 10km의(182k800∼199k800) 고속철도 노반공사 현장으로서 총 연장 중 교량공은 3.6km, NATM터널 2.6km, 그리고 토공 3.8km로 구성되어 있다. 이중 교량공은 PC Box 연속교(2@40m, 2@25m, 3@25m 등)가 주를 이루고 있으며 가설공법으로는 현장타설공법인 FSM(Full Staging Method) 공법을 채택하였다. 교량의 받침 형식으로는 고정단에는 포트받침 그리고 가동단에는 탄성받침이 적용되었다(참조 : www.ktx7-2.wo.to). (중략)

A Study on Behavior Characteristics of Precast Coping Part under Axial Load (축하중을 받는 프리캐스트 코핑부의 거동 특성 연구)

  • Won, Deok-Hee;Lee, Dong-Jun;Kim, Seung-Jun;Kang, Young-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • Recently, bridge construction technology has made great progress from development of high performance materials and new bridge types. However, most technology are based on methods of cast-in-place and material cost saving. The method of cast-in-place concrete causes environmental damages and costumer complaints. Especially, under bad weather conditions, the construction can not proceed. To overcome these disadvantages, new construction methods were developed to reduce construction time. These methods are called precast method. Most prefabricated methods have been applied to superstructure constructions of bridges, but very minutely applied to substructure constructions. The most important agendas on precast method are light weight and transportability of the precasted members, because very strict transporting specifications exist for road transportation of the precasted members. For example, the weight and length of coping members may be larger than the available transporting vehicles. Although column is constructed by precast method to save construction time, if coping member is constructed by cast-in-place method, then the column construction time reduction becomes meaningless. Therefore, in this study, a new precast coping member and a connecting system of column-coping member are proposed. The proposed method is verified by analyzing their ultimate performance through analysis and experimental study.

Torsional and Flexural Behavior Characteristics of Symmetric Pier Copping Beam (대칭형 교각 코핑부 보의 비틀림 및 휨 거동 특성)

  • Kwon, Min-Ho;Jung, Hee-Hyo;Kim, Jin-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.107-114
    • /
    • 2007
  • The main aim of this study was to evaluate the bending and torsional behaviors of representative regular type cap beams in elevated guideway structures. A1/2 scale model copping beam, excluding the column portion, was designed, constructed, and tested. The copping beam was subjected to horizontal monotonic and cyclic loads with a constant vertical load over the loading stage. The damage was very much dominated by torsion. Experiment results showed that the spiral confinement in the beam helped to restrain the opening of torsional cracks in the column zone. Hence, the torsional strength of the cap beam contributesgreatly to the confinement conditions of the column.

Safety Assessment of RC Pier Coping According to Modification of Rebar Arrangement (RC교각 코핑부 배근방법에 따른 안전성 평가)

  • Park, Bong-Sik;Park, Sung-Hyun;Shin, Wang-Su;Cho, Jae-Yeol
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1519-1525
    • /
    • 2011
  • Construction of the coping of reinforced concrete piers is very complicated due to heavy density of rebars and usually exposed to negligent accident. To correct these problems, coping is pre-assembled at the ground in pier coping pre-assembly method and recently a new method of rebar assembling has proposed in this study. For safety assessment of proposed method, small scale model test of railway bridge(PSC U-GIRDER T-shaped pier) was carried out and it was verified that crack pattern, failure mechanism and load resistance capacity are similar between existing method and proposed method. And using analytical approach, linear and non-linear finite element analysis was performed. As a result, it was checked that proposed method has an acceptable structural safety.

  • PDF

3-Dimensional Strut-Tie Model Analysis and Design of Structural Concrete (콘크리트 구조부재의 3차원 스트럿-타이 모델 해석 및 설계)

  • Yun, Young Mook;Park, Jung Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.411-419
    • /
    • 2006
  • In this study, a new approach employing 3-dimensional strut-tie models for analysis and design of 3-dimensional structural concrete with disturbed regions that are not properly occupied by current design codes is proposed. In addition, a computer graphics program for the practical application of the approach is developed. The approach adopts a grid strut-tie model to exclude the subjectivity in the selection of strut-tie model and evaluates the effective strength of concrete strut by considering the 3-dimensional failure criteria of concrete and the deviation angles between the struts and compressive principal stress trajectories. To verify the appropriateness of the approach, nine pile caps tested to failure are analyzed and a bridge pier is designed. The analysis and design results are compared with those obtained by several different methods.