• Title/Summary/Keyword: 광 주파수 빗

Search Result 3, Processing Time 0.026 seconds

Selective Extraction of a Single Optical Frequency Component from an Optical Frequency Comb (광 주파수 빗으로부터 단일 광 주파수 성분의 선택적 추출)

  • Han Seb Moon
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.225-234
    • /
    • 2023
  • Mode-locked pulse lasers have a temporal periodicity up over a short period of time. However, in the time-frequency domain, a pulsed laser with temporal periodicity is described as an optical frequency comb with constant frequency spacing. Each frequency component of the optical frequency comb in the frequency domain is then a continuous-wave (CW) laser with hundreds of thousands of single-frequency-component CW lasers in the time domain. This optical frequency comb was developed approximately 20 years ago, enabling the development of the world's most precise atomic clocks and precise transmission of highly stable optical frequency references. In this review, research on the selective extraction of the single-frequency components of optical frequency combs and the control of the frequency components of optical combs is introduced. By presenting the concepts and principles of these optical frequency combs in a tutorial format, we hope to help readers understand the properties of light in the time-frequency domain and develop various applications using optical frequency combs.

Technological Trend of Optical Frequency Comb Generator (광 주파수 빗 발생기의 기술 동향)

  • Park, Jaegyu;Song, Minje;Han, Sang-Pil;Kim, Sungil;Song, Minhyup
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.91-98
    • /
    • 2019
  • Optical frequency comb generators have been investigated as a signal source capable of generating highly stabilized ultrafast pulse lasers. The precise control of the optical frequency comb spacing by RF clock signals has led to a revolutionary paradigm shift in the precise measurement of time and frequency. Optical frequency combs also have advantages such as stable frequency spacing, stable number of lines, and robustness. Owing to these characteristics, optical frequency combs have been applied to the fields of high precision optical clock, communication, spectroscopy, waveform generation, and astronomy. In this article, we introduce the properties (i.e., generation methods, advantages, and so on) of various optical frequency combs, and discuss the expected future technological trends and applications.