• Title/Summary/Keyword: 광 공중합

Search Result 10, Processing Time 0.022 seconds

Photo-Induced Graft Copolymerization of Acrylonitrile onto Chitosan (Chitosan에 대한 아크릴로니트릴의 광개시 그라프트 공중합)

  • Kim, Wan-Young;Kim, Chong-Bae;Yug, Gyeong-Chang;Park, Sun-Ny
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.172-178
    • /
    • 1992
  • The graft copolymerization of acrylonitrile(AN) onto chitosan film by using $F^{3+}(FeCl_3{\cdot}6H_2O)$ as a photosensitizer in an aqueous medium was carried out under ultraviolet(UV) irradiation. The grafted copolymer was identified by using IR spectroscopy and scanning electron microscope. The effects of various polymerization parameters involving monomer concentration, photosensitizer concentration, polymerization time and polymerization temperature were investigated. As monomer concentration and photosensitizer concentration were increased, the percent grafting was increased up to limiting value. And also the percent grafting was found to increase by increasing the polymerization time and temperature.

  • PDF

Synthesis and Characterization of Fluorinated Poly (maleimide-co-methacrylate)s for Optical Waveguiding Materials (광도파로용 Fluorinated Poly(maleimide-co-methacrylate)s의 합성과 특성)

  • 김원래;한학수;한관수;장웅상;이철주
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.253-259
    • /
    • 2002
  • The objective of this study is to obtain thermally stable and low optical loss polymers for optical waveguiding materials. The crosslinkable poly (maleimide-co-methacrylate)s were synthesized using a pentafluorophenylmaleimide (an optical loss reducer), two methacrylate derivatives (refractive index controllers), and a glycidylmethacrylate (a crosslinker). These copolymers exhibited good thermal stability and could be thermally crosslinked by heat treatment. The refractive indexes of the copolymers could be precisely controlled by the variation of comonomer feed ratio, which was in the range of 1.45 ~ 1.49. These copolymers had very low birefringence of $6{ imes}10^{-4}$ ~ $1{ imes}10^{-4}$. These copolymers were crosslinked by contact printing and then developed by wet etching to obtain high quality waveguide pattern.

A Fluorescent Sensor Film for Detecting pH of Acidic Solutions (산성 용액의 pH를 감지할 수 있는 형광 센서막)

  • Min, Jae Young;Kim, Hyung Jin
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.2
    • /
    • pp.74-78
    • /
    • 2020
  • A push-pull conjugated dye (DCMP) was covalently immobilized on a silanized glass surface to produce a high sensitivity pH sensor film for operating in the acidic region. A pH-sensitive sensor film was prepared by photo-initiating copolymerization of a modified DCMP (DCMA), 2-hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate on the silanized glass surface. The absorbance of the sensor film increased with increasing pH between pH 2.0 and 5.0, and the fluorescence intensity of the film also increased about 50 times with increasing pH in the same pH range. The sensor film was reversible and reproducible under acidic conditions. The sensor film showed a relatively short response time between 20-50 seconds and high selectivity for proton in the presence of various metal ions.

Physical Properties of Styrene Copolymer and Contact Lens Application (스타이렌 공중합체의 물리적 특성 및 콘택트 렌즈로의 응용)

  • Kim, Tae-Hun;Ye, Ki-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.755-760
    • /
    • 2009
  • Styrene is broadly used as a polymer and a copolymer and is useful in manufacturing contact lenses due to its high refractive index. This study used styrene with the cross-linker EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Measurement of the physical characteristics of the copolymerized material showed that the refractive index is 1.4412 - 1.4628, water content 20 - 35%, visible transmittance 82.6 - 87% and the tensile strength 0.143 - 0.344 Kgf. Also, measurements showed that the refractive index and tensile strength increased while the water content decreased as the ratio of styrene increased. Based on the results of this study, the produced copolymer can be estimated to be suitable for use as a material for high performance functional contact lenses.

Study on the Ophthalmic Lens Materials with High Refractive Index Containing Vinylanisole (Vinylanisole을 포함한 고굴절률 안의료용 렌즈 재료에 관한 연구)

  • Kim, Tae-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.755-760
    • /
    • 2010
  • This study used 3-vinylanisole and 4-vinylanisole with the cross-linker EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), NVP (N-vinyl-2-pyrrolidone) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Measurement of the physical characteristics of the copolymerized material showed that the refractive index is 1.4496 - 1.4894, water content 22.93 - 35.50%, visible transmittance 88.8 - 90.8%. Also, measurements showed that the refractive index increased while the water content decreased as the ratio of 3-vinylanisole and 4-vinylanisole increased. And in cases of copolymer with 3-vinylanisole, 4-vinylanisole (added 15%) the results showed transmittance of 52.8 - 82.2%, 13.2 - 26.2% respectively for UV-A and UV-B showing that they have UV-blocking effects. Based on the results of this study, the produced copolymer can be estimated to be suitable for use as ophthalmic lens material for high refractive index and UV- blocking effects.

Influence of Artificial Tear Containing Carboxymethyl Cellulose Component on Physical Properties of Hydrogel Contact lens (카르복시메칠 셀룰로오스 성분이 포함된 인공누액이 하이드로젤 콘택트렌즈의 물성에 미치는 영향)

  • Cho, Seon-Ahr;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.457-463
    • /
    • 2013
  • To determine the impact of artificial tears which include carboxymethyl cellulose on a hydrogel contact lenses. Methods: A contact lenses made of the cross-linking agent, EGDMA (ethylene glycol dimethacrylate) and HEMA (2-hydroxyethyl methacrylate) and with added NVP (n-vinyl-2-pyrrolidone) and MMA (methyl methacrylate) was evaluated for water content, refractive index, spectral transmittance and contact angle of produced contact lens. Results: The physical properties of the sampled copolymerized polymers showed that water content, refractive index, visible ray transmittance and contact angle were in the range of 26.61%~48.58%, 1.422~1.455, 80.8%~91.4% and $33.93^{\circ}{\sim}65.70^{\circ}$, respectively. In addition, after soaking with artificial tears, the water content, refractive index and contact angle were in the range of 24.46%~48.25%, 1.422~1.457, 77.0%~91.0% and $37.25^{\circ}{\sim}77.33^{\circ}$, respectively. The changes of the physical property depending on hydration time and showed an increase of refractive index and contact angle, decrease of water content and visible ray transmittance. Conclusions: Artificial tears which include carboxymethyl cellulose sodium which is used as a wetting agent influenced water content, refractive index, contact angle and spectral transmittance of a hydrogel contact lenses.

Opto-Physical Properties of Ophthalmic Lens Polymer Containing σ, m, p-Substituted Difluoroaniline as Additives (σ, m, p-위치로 치환된 Difluoroaniline을 첨가제로 사용한 안의료용 렌즈 고분자의 물리·광학적 특성)

  • No, Jung-Won;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • Purpose: The functional ophthalmic lenses containing fluorine-substituted aniline group (2,4-difluoroaniline, 2,6-difluoroaniline, 3,4-difluoroaniline) were manufactured and the physical and optical characteristics of copolymerized ophthalmic lens were investigated. Methods: HEMA (2-hydroxyethylmethacrylate), NVP (N-vinyl pyrrolidone), MA (methacrylic acid), the cross-linker EGDMA (ethylene glycol dimethacrylate) and the initiator AIBN (azobisisobutyronitrile) were used as a basic combination and fluorine-substituted aniline group (2,4-difluoroaniline, 2,6-difluoroaniline, 3,4-difluoroaniline) were used as additives for preparing the hydrogel soft contact lenses. The hydrogel ophthalmic lens was manufactured by cast mould method and the ophthalmic lenses were stored in a 0.9% NaCl normal saline for 24 hrs. Results: The optical transmittance of the sample with addition 2,4-difluoroaniline showed that the UV-B(9.8~51.4%), UV-A(58.8~79.2%) and visible transmittance(87.0~90.4%). In the case of 2,6-difluoroaniline were measured the UV-B(80.2~83.2%), UV-A(85.8~86.4%), and visible transmittance(90.8~91.4%). Also, the optical transmittance of ophthalmic lens containing 3,4-difluoroaniline were measured the UV-B transmittance of 3.8~30.4%, UV-A transmittance of 47.8%~74.4% and the visible transmittance of 86.2~91.0% respectively. Conclusions: Based on the results of this study, 2,4-difluoroaniline and 3,4-difluoroaniline can be used effectively as additive for UV-blocking ophthalmic contact lenses.

Preparation and characterization of Poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate)-coated iron oxide nanoparticles (Poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate)가 도입된 산화철 나노 입자의 제조 및 발열 특성 연구)

  • Ryu, Sunggon;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.106-112
    • /
    • 2018
  • Recently, the hyperthermia treatment of malignant tissues has gained great attention as a biocompatible and benign method that facilitates successful cancer therapy compared to radiation and chemotherapy. In this study, superparamagnetic ($Fe_3O_4$) iron oxide nanoparticles (IONP) coated with biocompatible polymer (IONP@P(MPC/FOM)) for the purpose of hyperthermia treatment were prepared and related characterization were performed. IONPs with having 15 nm diameter were first prepared by coprecipitation and followed by surface modification with 4-cyanopentanoic acid dithiobenzoate (CTP) for reversible addition-fragmentation chain transfer (RAFT) copolymerization by using 2-methacryloyloxyethyl phosphorylcholine (MPC) and fluorescein O-methacrylate (FOM) to form corona layer of P(MPC/FOM) on the surface of the IONP. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the morphology and hydrodynamic size of the IONP@P(MPC/FOM) and thermogravimetric analysis (TGA) confirmed the formation of P(MPC/FOM) corona layer, respectively. Exposing IONP dispersion to alternating magnetic field suggests that the IONP@P(MPC/FOM) aqueous dispersion with 0.2 wt.% can be used for hyperthermia treatment.

Preparation and Characterization of Silicone Hydrogel Lens Containing Poly(ethylene glycol) (PEG를 포함한 실리콘 수화젤 렌즈의 제조 및 특성)

  • Jang, Ha-Na;Chung, Youn-Bok;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.169-174
    • /
    • 2009
  • Silicone hydrogels incorporated with poly(ethylene glycol)(PEG) were prepared and characterized to evaluate the effects of PEG on contact lenses. The silicone hydrogels were copolymerized with methacryloxypropyl tris(trimethylsiloxy) silane (TRIS), methyl methacrylate (MMA), N,N-dimethyl acrylamide (DMA) and PEG-containing monomers such as poly(ethylene glycol) methyl ether methacrylate (PEG- MEM). The silicone hydrogels were characterized using Fourier transform infrared spectroscopy (FT-IR), electron spectroscopy of chemical analysis (ESCA), and scanning electron microscopy (SEM). Water absorbance, water contact angle and light transmittance of the silicone hydrogels were evaluated. The experiments of protein adsorption were also carried out to evaluate the protein adsorption in tears. The peak intensity of C-O bond was increased by the incorporation of PEG-containing monomers and thus PEG incorporation into silicone hydrogels could be confirmed. Phase separation was not shown by the SEM observation of the cross-section of silicone hydrogels. Water absorbancy was increased, while water contact angle and light transmittance were decreased with increasing incorporation of the PEG-containing monomers. The absorption of proteins in tears, albumin, lysozyme and $\gamma$-globulin, on the surface of silicone hydrogels was decreased with increasing incorporation of the PEG-containing monomers.