• Title/Summary/Keyword: 광해방지사업

Search Result 21, Processing Time 0.021 seconds

Policy Suggestions for Soil Contamination Prevention and Management of Inactive or Abandoned Metal Mines (휴.폐금속광산지역의 토양오염관리정책의 평가)

  • Park Yong-Ha;Seo Kyung-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 2006
  • Attempts were made to analyze the national policy of soil contamination prevention and management of inactive or abandoned metal (IAM) mines in Korea. This approach focused on legal systems and legislation, remediation technology development, and the arrangement or distribution of budgets pertaining to national policy since the mid 1990's. Prevention of Mining Damage and Recovery Act enacted. Defines the roles, responsibility and budget of the government when recovering mine damages. However, in 2005 there still remains to improve the national policy of soil contamination prevention and management of IAM mines. Analysis of national and industrialized foreign countries including the United States, the United Kingdom, and the Netherlands suggest the following improvements: i) arranging distinct regulations between strict and non-strict liability criteria for potentially responsible parties; limiting innocent and non-strict liability depending on the period of incurred mining activity, ii) enhancing participation of local communities by enforcing law and legislation, iii) establishing a national database system of (potentially) IAM contaminated sites based on the Website-Geographic Information System, iv) carrying out site-specific risk assessments and remediation of IAM contaminated sites, v) preparation and distribution of clean-up fund at mine sites adequately, and vi) technology development for the cleaning of IAM contaminated sites; awarding positive incentives of a legal nature for participants applying newly developed technology in IAM mines.

The Case Study : The Efficiency of Using UAV and 3D-model for Mine Reclamation Work Monitoring (무인항공기와 3차원 지표모델의 광해방지사업 모니터링에 대한 효율성 고찰)

  • Kim, Seyoung;Yu, Jaehyung;Shin, Ji Hye;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigated the effectiveness of Unmanned Aerial Vehicle (UAV) and 3D modeling on mine reclamation monitoring. The high spatial resolution of 3.8 cm ortho-mosaic image and Digital Elevation Model (DEM) are constructed based on UAV air survey. The ortho-mosaic image effectively shows mine reclamation activities and recognize objects and topological changes in the image. The comparative analysis of 3D models between UAV based DEM and report based DEM reveals that total amount of $268,672m^3$ additional dumping of contaminated soil is equivalent to 710,000 ton. It concludes that a UAV based survey enables high accuracy spatial information extraction for mine reclamation activities with high efficiency. It is expected that UAV survey will be very effectively used for preliminary data acquisition and project monitoring for mine reclamation activities.

A Study on the Status and Major Achievements on Mine Subsidence Prevention Technology (광해방지 지반침하방지 기술개발 추진 현황 및 주요 성과)

  • Yang, In Jae;Lee, Seung Ah
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.357-365
    • /
    • 2017
  • The mine subsidence prevention technology has been promoted based on the field test for design, construction, automation measurement and monitoring optimized for investigation, design and mine-filling efficiency customized in Korean mining environment. Based on the R&D roadmap ('07~'16) of the 1st and 2nd stage, mine reclamation technology development has been focused on developing method of evaluating subsidence stability, development of filling material and optimum filling technology, and development of measuring instrument. In the future, in order to systematic management for the subsidence risk areas, we intend to enhance technological capabilities and strengthen the technological infrastructure for business promotion in parallel with the discovery and introduction of new technology to prevent subsidence in the 4th Industrial Revolution era.

A Study on the Basic Geometry Analysis of Abandoned Underground Mine Tunnels in Korea and Advanced Measuring-Analysis Technology for Underground Mine Cavities (한국의 폐광산 지하 채굴갱도 기초형상 분석 및 개선된 광산 지하공동 측정·분석 기술 연구)

  • Kim, Soo-Lo;Park, Sung-Bin;Choi, Byung-Hee;Yun, Jung-Mann;Jeong, Gyo-Cheol
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.455-465
    • /
    • 2016
  • The collapse of underground mine development void for mineral resources can cause the subsidence of ground surface. In order to prevent the subsidence of ground, data such as maps or pictures of past mining site is important information for current mine reclamation works. In particular, mine subsidence management was based on mining maps and pictures. The process of the mining area surveys, safety evaluation, and ground reinforcement are normally possible with information such as maps and pictures in past mining. During the Japanese colonial period and 1960's, a lot of mines were developed in Korea indiscriminately. However, mining information at that time is limited to use. In the future, mining information will become even more rare. MIRECO intends to establish a realistic alternative solution. In this study, the basic numerical information of developed mine tunnels in Korea is statistically reviewed, and advanced underground cavity measuring technology was studied. 4,473 mine tunnel opening data of 1,784 abandoned mines in korea were collected and sorted. As a result of the analysis, the average value of small mine tunnel openings in Korea was 1.982 m in height and 1.959 m in width. The mean value of shape factor was analyzed as 0.485. The summary of these numerical mine data will be helpful for understanding and researching Korean abandoned mines. Therefore, the development of measurement technology for abandoned mine cavities and tunnels is expected to facilitate more effective mine subsidence management works in Korea.

Transfer of Arsenic from Paddy Soils to Rice Plant under Different Cover Soil Thickness in Soil Amendments in Abandoned Coal Mine (폐탄광지역 비소오염 농경지(논) 개량 시 복토두께에 따른 비소의 벼 전이 및 토양용액 특성)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ko, Ju In;Bak, Gwan-In;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.483-494
    • /
    • 2021
  • This study was carried out to investigate the feasibility of reducing clean cover soil using a flooded column test in arsenic-contaminated farmland reclamation of abandoned coal mine area that shows generally low or about worrisome level (25 mg/kg) of Korea soil environment conservation act unlike abandoned metal mine. During the monitoring period of soil solution for 4 months, chemical properties (pH, EC, ORP, Fe, Mn, Ca, and As) in each layer (clean soil cover and contaminated/stabilized soil) showed different variation. This result revealed that soil solution in stabilized or contaminated soil rarely affected that in cover soil. Whether stabilized or not, arsenic concentrations in the rice roots grown in the soil covers with the thickness of 40 cm decreased by 98% in compared with the that grown in the control soil. In case of the soil covers with 20 cm thickness on stabilized soil, it decreased by 80% and this was 22 percentage point higher than when the soil of lower layer was not stabilized. Thus, reducing clean cover soil could be possible in contaminated farmland soil reclamation if appropriate stabilization of contaminated soil is carried.

Feasibility Study on Technology Status Level and Location Conditions of Urban Mining Industry in Abandoned Mine Area (도시광산 산업의 현황수준 및 폐광지역 입지여건 타당성 연구)

  • Ko, Ilwon;Park, Joo-Hyun;Park, Jae-Hyun;Yang, In-Jae;Lee, Seung-Ae;Kim, Dae-Yeop;Kim, Su-Ro
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.553-563
    • /
    • 2018
  • In this study, the location conditions and optimal technologies required for creating urban municipalities that can utilize the space in an abandoned mine area, where there is no infrastructure related to recycling wastes and valuable metals, are investigated. The urban mining industry deals with mineral resources through the processing of high value-added industrial by-products and wastes, and it is a useful linkage industry for the development of mineral resources and prevention of mining hazards. Urban mining technologies targeted at the abandoned mine area constitute screening, extraction, and smelting for recycling waste products. By analyzing the technologies available, an industrial network can be developed for recycling waste batteries and catalysts, which are promising raw materials. It is also important to establish an appropriate location for related industries that can generate value-added resources, rather than the resource supply and demand conditions seen in general urban mines. In order to overcome the accessibility and infrastructure limitations, the economic foundation of the abandoned mine area should consider the linkage of raw material supply, key technologies for recycling useful mineral resources that are derived from urban mines, spatial and site conditions, and industrial characteristics.

A Case Study of Mine Environmental Restoration using Coal Ash (발전회를 이용한 광산환경 복원사례 연구)

  • Yoo, Jong-Chan;Ji, Sang-Woo;Ahn, Ji-Whan;Kim, Chun-Sik;Shin, Hee-Young
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.80-88
    • /
    • 2017
  • Globally, there has been a lot of research related to recycling coal ash from power plant stations. This research is happening because there is a considerable shortage of sites for reclamation of increased coal ash every year. In addition, a variety of environmental pollutants have appeared because of mining activity. Abandoned coal mine, pits, and mine tailing piles caused pollutants to come to the surface resulting in serious damage for humans and the environment. Therefore in this study, we investigated whether or not coal ashes have the ability to prevent several environmental problems by mining in Korea and a manageable form recycling coal ashes. In overseas countries, there is a sufficient field of applicable cases where coal ash is used for neutralizing AMD (Acid Mine Drainage), covering of the waste materials, grouting, and soil amendments. However in Korea, since the coal ash is classified as a 'waste', there is an insufficient field applicable cases so far. Therefore it is necessary to establish a specific standard and management system for the utilization of coal ash based on the relevant precedent cases applied abroad in order to prevent environmental pollution caused by mining activity in Korea.

A Study on Environmental.Mine Geographic Information System Approach for the Sustainable Mine Management and Prevention of Mine Hazards - Focused on the Environmental Section - (지속가능한 휴폐광산 관리 및 공해 방지를 위한 환경.광산 지리정보체계 구축 및 개선 연구 - 환경부분 중심으로 -)

  • Lee, Ju-Young;Han, Moo-Young;Yang, Jung-Seok;Choi, Jae-Young
    • Journal of Environmental Policy
    • /
    • v.8 no.1
    • /
    • pp.129-143
    • /
    • 2009
  • In South Korea, Mine industries were encouraged to obtain the natural resource from 1960 to 1980. However, the depletion of natural resource and decreasing price have been caused by the voluntary closure of non-economical mines and a cut of their production since 1990. Harmful wastewater containing such heavy metals as iron, aluminum, arsenic, and cadmium are being discharged from abandoned pits and waste stone and tailing dumping sites following the closure of mines. Therefore, the objective of this paper suggests a policy of mine hazard prevention(PMHP) and method that allows the combination of new spatial data and as well as collected data on resources for the sustainable mine reclamation and management using EGIS/MGIS technique to develop an integrated plan and management techniques.

  • PDF

A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water (알럼 및 철수산화물 흡착제의 광산배수 내 비소 흡착성능 비교연구)

  • Choi, Kung-Won;Park, Seong-Sook;Kang, Chan-Ung;Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.689-698
    • /
    • 2021
  • Since the mine reclamation scheme was implemented from 2007 in Korea, various remediation programs have been decontaminated the pollution associated with mining and 254 mines were managed to reclamation from 2011 to 2015. However, as the total amount of contaminated mine drainage has been increased due to the discovery of potential hazards and contaminated zone, more efficient and economical treatment technology is required. Therefore, in this study, the adsorption properties of arsenic was evaluated according to the adsorbents which were derived from water treatment sludge(Alum based adsorbent, ABA-500) and granular ferric hydroxide(GFH), already commercialized. The alum sludge and GFH adsorbents consisted of aluminum, silica materials and amorphous iron hydroxide, respectively. The point of zero charge of ABA-500 and GFH were 5.27 and 6.72, respectively. The result of the analysis of BET revealed that the specific surface area of GFH(257 m2·g-1) was larger than ABA-500(126~136 m2·g-1) and all the adsorbents were mesoporous materials inferred from N2 adsorption-desorption isotherm. The adsorption capacity of adsorbents was compared with the batch experiments that were performed at different reaction times, pH, temperature and initial concentrations of arsenic. As a result of kinetic study, it was confirmed that arsenic was adsorbed rapidly in the order of GFH, ABA-500(granule) and ABA-500(3mm). The adsorption kinetics were fitted to the pseudo-second-order kinetic model for all three adsorbents. The amount of adsorbed arsenic was increased with low pH and high temperature regardless of adsorbents. When the adsorbents reacted at different initial concentrations of arsenic in an hour, ABA-500(granule) and GFH could remove the arsenic below the standard of drinking water if the concentration was below 0.2 mg·g-1 and 1 mg·g-1, respectively. The results suggested that the ABA-500(granule), a low-cost adsorbent, had the potential to field application at low contaminated mine drainage.

Environmental Assessment of Heavy Metals Anna Abandoned Metalliferous Mine in Korea (국내 휴/폐광 금속황산 주변의 중금속 환경오염 평가)

  • 정명채;정문영;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.21-33
    • /
    • 2004
  • The objective of this study is to review of environmental assessment of heavy metals derived from various metalliferous mines in Korea. As a results of national wide research for heavy metal contaminations in the vicinity of metalleferous mines, the main contaminants are mine waste materials including tailings. From the materials, toxic elements including As, Cd, Cu, Pb and Zn can be dispersed into downstream through wind and water. Thus, soils around the mines contain elevated levels of those elements, which are over the guide values for environmental regulation of soils in Korea. Arsenic is one of the most important elements contaminated by mining activities, to a less extent, Cd, Cu, Pb and Zn. In spite of remediation works for some metal mines by the government, there are still lots of abandoned mines which are necessary for reclamation of mining sites. This study also includes that metal concentrations in soils and tailings can be varied upon various decomposition methods including 0.1N HC1 and aqua regia and sequential extraction scheme, with differences in each element, too. This may be due to geochemical characteristics of the elements, such as solubility, mobility and chemical forms in the geochemical environment. Finally, it is suggested that a certain organization should be runned by Korean government for management of abandoned mines.