• Title/Summary/Keyword: 광합성유효광량자속밀도

Search Result 5, Processing Time 0.032 seconds

The Distribution Interpretation of Temperature, Humidity and PPFD in Hybrid Plant Factory According to Climate Change (기후변화에 따른 태양광병용형 식물공장의 온.습도 및 조도 분포 해석)

  • Kwon, Sook-Youn;Lim, Jae-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.704-707
    • /
    • 2011
  • 본 논문은 ZigBee 기반의 통합센서 네트워크 구축 및 모니터링 시스템 구현을 통해 계절과 시각, 그리고 천기상태에 따라 변화하는 태양광의 광합성유효광량자속밀도를 태양광병용형 식물공장 내부의 각 영역별로 측정 및 분석하고자 한다. 통합센서를 통해 수집된 정보는 식물의 생육에 필요한 적정 태양광 에너지가 유입되는 시간대와 보광을 필요로 하는 시간대 및 그 양을 파악하는데 활용되며, 이를 통해 조명 및 냉난방 기기를 지능적으로 제어함으로써 전체 에너지 소비를 절감하고자 한다.

  • PDF

Effects of Supplemental Lighting of High Pressure Sodium and Lighting Emitting Plasma on Growth and Productivity of Paprika during Low Radiation Period of Winter Season (겨울철 약광기 파프리카의 생육 및 생산성에 대한 고압나트륨 및 Lighting Emitting Plasma 램프의 보광 효과)

  • Lee, Jong-Won;Kim, Ho Cheol;Jeong, Pyeong Hwa;Ku, Yang-Gyu;Bae, Jong Hyang
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.346-352
    • /
    • 2014
  • This research was carried out to investigate the effect of supplemental lighting on stable productivity of paprika (Capsicum annuum L.) during low radiation period of winter season. The supplemental lighting sources used in this research were high pressure sodium (HPS) and lighting emitting plasma (LEP). Photosynthetic photon flux density (PPFD) emitted from both lamps decreased as vertical distance from lamp increased. The PPFD of LEP lamps were twice more than that of the HPS lamp per unit distance, but the rate of decreased PPFD of t he LEP per unit distance was higher than that of HPS lamp. And different degrees of PPFD between HPS and LEP lamps by horizontal distance had a smaller degree of difference than by vertical distance at the 100 cm away point. As daily average PPFD measured at the top of the plant under the supplemental lighting during January, the supplemental lighting significantly increased radiation. Radiation of HPS and LEP lighting was 137% and 315% higher than control (without supplemental lighting = sunlight). Air temperature in the top of the plant was not significant different among treatments. HPS and LEP lighting had no effect on increase of flower settings. Leaf length and width with LEP lighting was the longest, photosynthetic was higher than those of other treatments. Supplemental lighting treatments significant increased fruit length and diameter. Especially LEP lighting treatment had a greater effect on fruit length and diameter. In conclusion, LEP lighting treatment during low radiation period greatly affected growth and production of paprika. Further research will be required for the suitable application of LEP lighting in paprika production.

Effects of Greenhouse Orientation on the Greenhouse Environment and the Growth of Tomato in Forcing Culture (시설방향이 시설내 환경과 촉성재배 토마토 생육에 미치는 영향)

  • Choi, Young-Hah;Park, Kyoung-Sub;Kang, Nam-Jun;Kim, Hong-Lim;Kwak, Yong-Bum;Kim, Heung-Deug;Goo, Dae-Hoe;Cho, Myoung-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • This experiment was conducted to investigate the effect of greenhouse orientation on the greenhouse environment and the growth and yield of tomato cv 'Momotaro-Yoku' in forcing culture. The photosynthetic phpton flux density (PPFD) of a.m was higher in north-south orientation than that in east-west orientation and it was opposed in the p.m. Mean PPFD of a day was higher in east-west orientation than that in north-south orientation because the light transmitting area became larger in east-west orientation with decrease of incidence angle. The PPFD at 60 cm point above ground of all furrows was poor due to shadows near plants and it was higher in north-south orientation than that in east-west orientation. The air temperature in the greenhouse was higher in east-west orientation than that in north-south orientation but there was no significant difference since mid February as solar altitude goes up. The soil temperature was some higher in east-west orientation than that in north-south orientation and there was not significant difference among ridges. In east-west orientation, as ripening was promoted, high early yield of tomato were obtained. So total yield was greater about 8% in east-west orientation than that in north-south orientation. Therefore, it was considered that east-west orientation is more advantageous than north-south orientation for forcing culture of tomato.

Growth and Fruit Characteristics of Blueberry 'Northland' Cultivar as Influenced by Open Field and Rain Shelter House Cultivation (노지와 비가림 하우스 재배에 따른 블루베리 'Northland' 품종의 생육및 과실 특성 분석)

  • Kim, Jin-Gook;Jo, Jung-Gun;Kim, Hong-Lim;Ryou, Myung-Sang;Kim, Jung-Bae;Hwang, Hae-Song;Hwang, Yong-Soo
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.387-393
    • /
    • 2011
  • This study was conducted to find the effects of microclimates such as air and soil temperature, photosynthetic photon flux density (PPFD) on the berry development and physiological property between cultivation conditions (open field and rain shelter house) in 'Northland' blueberries (Vaccinium corymbosum). The rate of berry growth and development was stimulated in plants grown in rain shelter house, thus, berry reached to the ripe stage about one week earlier than those in open field. Berry weight and size at ripe stage seemed not affected by microclimates. However, total soluble solids content was higher in berries from open field whereas the titratable acidity was significantly higher in berries grown in rain shelter house. Berry firmness at ripe stage was little affected by growing condition. Total anthocyanin content of ripe berries was higher in berries harvested from rain shelter house. Total phenolics content and anti-oxidation activity of berries were higher in open field than those of rain shelter house during berry development but no differences were found at ripe berries.

Growth Characteristics of Lettuce under Different Frequency of Pulse Lighting and RGB Ratio of LEDs (LED의 간헐조명과 RGB 비율에 따른 상추의 품종별 생육 특성)

  • Kim, Sungjin;Bok, Gwonjeong;Lee, Gongin;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • This study was aimed to investigate the effect of 1)irradiation with several different ratios using red, green, and blue LEDs and 2)various pulsed light irradiation with 50% duty ratio using red and blue LEDs on the growth and morphogenesis of three lettuce cultivars (Lactuca sativar L. cv. 'Jukchukmeon', 'Lolo Rosa', and 'Grand Rapid') in hydroponics culture system for 4 weeks after transplanting. Seeds were sown in rock-wool plug trays and they were placed in a culture room which was controlled at $23{\pm}1^{\circ}C/18{\pm}1^{\circ}C$ temperature and 50-60/70-85% for day and night, respectively, during cultivation period. Irradiated RGB ratios with LEDs were 6:3:1, 5:2.5:2.5, 3:3:4, 2:2:6, and 1:1:8 with $110{\pm}3{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD on the surface of cultivation bed. The frequencies of pulsed lighting was 50, 100, 500, 1,000, 5,000, 10,000, 25,000Hz (20, 10, 0.1, 0.04 ms) with red and blue LEDs and 50% duty ratio. At the RGB ratio of 6:3:1, the average fresh weight of 'Jukchukmeon' was significantly higher than that of other RGB treatments, but no significant difference compared to the fluorescent treatment. The average fresh weight at 1:1:8 RGB ratio in 'Lolo Rosa' was significantly lower than that of other RGB treatments. Leaf number and fresh weight of 'Grand Rapid' were significantly lower in the control and 1:1:8 RGB treatments, compared to the other RGB treatments. As the ratio of blue light increased, leaf length decreased and leaf shape became round in three lettuces. Although there is little change in growth, it could not be found any tendency to affect the growth and morphogenesis of three lettuces caused by increasing or decreasing frequency of pulsed lighting with 50% duty ratio at the $72{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD.