• Title/Summary/Keyword: 광특성

Search Result 5,635, Processing Time 0.037 seconds

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF

ON THE EFFECTS CHLORINITIES UPON GROWTH OF EARLIER LARVAE AND POST-LARVA OF A FRESH WATER PRAWN, MACROBRACHIUM ROSENBERGI(DE MAN) (담수산새우 Macrobrachium rosenbergi (de Man)의 초기유생 및 Post-larva.의 성장에 미치는 염분량에 관하여)

  • KWON Chin Soo;UNO Yutaka;OGASAWARA Yohismitsu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.97-114
    • /
    • 1977
  • The fresh water prawn, Macrobrachium rosenbergi(de Man) is a very common species in Indopacific region, which inhaits both fresh and brackish water in low land area, most of rivers and especially aboundant in the lower reaches which are influenced by sea water. It is one of the largest and commercial species of genus Macrobrachium, which is commonly larger than $18\~21cm$ in body length, from the basis of eye-stalked to the distal of telson. As a part of the researches in order to investigate the possibilities on transplantation and propagation of this species, this work dealt with the problems on the effects of chlorinities upon zoeal larvae and post-larvae 1). metamorphosis rate and optimum chlorinity for metamorphosis to post-larve, 2). tolerance and comparative survival rate on various chlorinties, from fresh water to sea water $(19.38\%_{\circ}\;Cl)$, which reared for six days upon each stage of zoeal larvae, 3). accomodation rate on chlonities which reared for twelve days after transmigration into variant chlorinities of the range from $3.68\%_{\circ}$ Cl to $1.53\%_{\circ}$ Cl in the way of rearing of the range from $3.82\%_{\circ}$ Cl to $11.05\%_{\circ}$ upon each stage of zoea, 4). tolerance on both of fresh and sea water upon zoeal larva and post-larva under the condition of $28^{\circ}C{\pm}1$ in temperature and feeding on Artenia salina nauplii, 5). relationship between various chlorinities and grwth of post-larvae under the condition of $28^{\circ}C$ in tmperature and feeding on meat of clam. Thus these investigations were performed in order to grope for a comfortable method on seedmass production. Up to the present, the study on the effects of chlorinity upon earlier zoeal larvae and post-larvae of Macrobrachium species has been scarcely performed by workers with the exception of Lewis(1961) and Ling (1962,, 1967), even so their works were not so detailed. On the other hand, larvae of several species of this genus were reared at the water which mixed sea water so as to carry out complete metamorphosis to post-larva by workers in order to investigate on earlier 1 arval and earlier post-larval development, such as Macrobrachium lamerrei (Rajyalakshmi, 1961), M. rosenbergi and M. nipponense (Uno and Kwoa, 1969; Kwon and Uno, 1969), M. acanthurs (Choudhury, 1970; Dobkin, 1971), M. carcinus(Choudhury, 1970), M. formosense(Shokita, 1970), M. olfersii (Duggei et al., 1975), M. novaehallandiae (Greenwood et al., 1976), M. japonicum (Kwon, 1974) and M. lar (Shokita, personal communication), and there fore it is regarded that chlorinity is, generally, one of absolute factors to rear zoeal larvae of brackish species of Macrobrachium genus. Synthetic results on this work is summarized as the follwings: 1) Zoeal larvae required different chlorinities to grow according to each stage, and generally, it is regarded that optimum range of living and growing is from $7.63\%_{\circ}Cl\to\;7.63\%_{\circ}Cl$, and while differences of metamorphsis rate, from first zoea to post-larva, is rarely found in this range, and however it occurs apparently in both of situation at $7.63\%_{\circ}Cl$ below and $16.63\%_{\circ}Cl$ above and moreover, metamorphosis rate is delayed somewhat in case of lower chlorinity as compared with high chlorinity in these situations. 2) Accomodation in each chlorinity on the range, from fresh water to sea water, is different according to larval stages and while the best of it is, generally, on the range from $14.24\%_{\circ}Cl$ to $8.28\%_{\circ}Cl$ and favorite chlorinity of zoea have a tendency to remove from high chlorinity to lower chlorinity in order to advance larval age throughout all zoeal stages, setting a conversional stage for eighta zoea stage. 3) Optimum chlorinity of living and growth upon postlarvae is on the range of $4.25\%_{\circ}Cl$ below, and in proportion as approach to fresh water, growth rate is increased. 4) Post-large are able to live better in fresh water in comparison with zoeal larvae, which are only able to live within fifteen hours, and by contraries, post-larvae are merely able to live for one day as compared with ?미 larvar, which are able to live for six days more in sea water $19.38\%_{\circ}Cl\;above$. 5) Also, in case of transmigration into higher and lower chlorinities in the way of rearing in the initial chlorinities $ 3.82\%_{\circ}Cl,\;7.14%_{\circ}Cl\;and\;11.05%_{\circ}Cl$, accoodation rate is a follow: accomodation capacity in ease of removing into higher chlorinities from lower chlorinities is increased in proportion as earlier stages, setting a conversional stage for eighth zoea stage, and by contraries, in case of advanced stages from eighth zoea it is incraesed in proportion as approach to post-larva stage in the case of transmigration into lower chlorinity from higher chlorinity. On the other hand, it is interesting that in case of reciprocal transmigration between two different chlorinitiess, each survival rate is different, and in this case, also, its accomodation in each zoea stage has a tendency to vary according to larval stages as described above, setting a conversional stage for eighth zoea stage. 6) It is likely that expension of radish pigments on body surface is directly proportional to chlorinity during the period of zoea rearing, and therefore it seems like all body surfacts of zoea larvae be radish coloured in case of higher chlorinity. 7) By the differences that each zoeal larvae, postlarvae, juvaniles and adult prawn are required different chlorinity for inhabiting in each, it is regarded that this species migrats from up steam to near the estuary of the river which the prawns inhabits commonly in natural field for spawning and growth migration. 8) It had better maintainning chlorinities according to zoeal stage for a comfortable method on seed-mass production that earlier larva stages than eighth zoea are maintained on the range from $8\%_{\circ}Cl\;to\;12\%_{\circ}Cl$ to rear, and later larva stages than eighth zoea, by contraries, are gradually regula ted-to love chlorininity of the range from $7\%_{\circ}Cl\;to\;4\%_{\circ}Cl$ according to advance for post-larva stage.

  • PDF

Optimization and Development of Prediction Model on the Removal Condition of Livestock Wastewater using a Response Surface Method in the Photo-Fenton Oxidation Process (Photo-Fenton 산화공정에서 반응표면분석법을 이용한 축산폐수의 COD 처리조건 최적화 및 예측식 수립)

  • Cho, Il-Hyoung;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.642-652
    • /
    • 2008
  • The aim of our research was to apply experimental design methodology in the optimization condition of Photo-Fenton oxidation of the residual livestock wastewater after the coagulation process. The reactions of Photo-Fenton oxidation were mathematically described as a function of parameters amount of Fe(II)($x_1$), $H_2O_2(x_2)$ and pH($x_3$) being modeled by the use of the Box-Behnken method, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The application of RSM using the Box-Behnken method yielded the following regression equation, which is an empirical relationship between the removal(%) of livestock wastewater and test variables in coded unit: Y = 79.3 + 15.61x$_1$ - 7.31x$_2$ - 4.26x$_3$ - 18x$_1{^2}$ - 10x$_2{^2}$ - 11.9x$_3{^2}$ + 2.49x$_1$x$_2$ - 4.4x$_2$x$_3$ - 1.65x$_1$x$_3$. The model predicted also agreed with the experimentally observed result(R$^2$ = 0.96) The results show that the response of treatment removal(%) in Photo-Fenton oxidation of livestock wastewater were significantly affected by the synergistic effect of linear terms(Fe(II)($x_1$), $H_2O_2(x_2)$, pH(x$_3$)), whereas Fe(II) $\times$ Fe(II)(x$_1{^2}$), $H_2O_2$ $\times$ $H_2O_2$(x$_2{^2}$) and pH $\times$ pH(x$_3{^2}$) on the quadratic terms were significantly affected by the antagonistic effect. $H_2O_2$ $\times$ pH(x$_2$x$_3$) had also a antagonistic effect in the cross-product term. The estimated ridge of the expected maximum response and optimal conditions for Y using canonical analysis were 84 $\pm$ 0.95% and (Fe(II)(X$_1$) = 0.0146 mM, $H_2O_2$(X$_2$) = 0.0867 mM and pH(X$_3$) = 4.704, respectively. The optimal ratio of Fe/H$_2O_2$ was also 0.17 at the pH 4.7.

Sodium and Potassium Content of School Meals for Elementary and Junior High School Students in Daegu, Masan, Gwangju, and Jeju (대구, 마산, 광주, 제주지역 학교급식의 나트륨 및 칼륨 함량 분석)

  • Lim, Hyeon-Sook;Ko, Yang Sook;Shin, Dongsoon;Heo, Young-Ran;Chung, Hae-Jung;Chae, In-Sook;Kim, Hwa Young;Kim, Mi-Hye;Leem, Dong-Gil;Lee, Yeon-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1303-1317
    • /
    • 2013
  • The purpose of this study was to determine the sodium (Na) and potassium (K) content of school meals served in elementary and junior high school in Korea. In this study, 872 kinds of school meal dishes were collected from twelve elementary and twelve junior high schools located in four different cities in Korea (Daegu, Masan, Gwangju, and Jeju). The dishes were classified into three main categories; staple dish, subsidiary dish, and dessert. Each main category was further sub-classified into 4 kinds of staple dishes, 15 kinds of subsidiary dishes, and 5 kinds of dessert dishes. The Na and K content of dishes were then analyzed by atomic absorption spectroscopy. The Na content of individual dishes showed considerable differences, ranging from 9 to 2,717 mg/100 g. Among the staple dishes, cooked rice contained relatively less Na, but other staple dishes such as a la carte, noodle, and rice-gruel contained considerably high amounts of Na. Regarding the subsidiary dishes, the Na content of salad was low, but those of Jangachi, stir-fried dishes, and kimchi were considerably high. Among the dessert dishes, beverages, fruit, and milk/dairy products contained relatively low amount of Na, while rice cakes and baked goods, and snacks contained noticeably high amounts of Na. Unlike the Na content, the K content between the dishes did not show much variability. Cooked rice and rice cakes contained relatively low amounts of K, similar to other dishes, and ranged from 104 to 220 mg/100 g. The Na/K ratio was especially high in rice cakes and Jangachi, while of the ratio in beverages, milk/dairy products, salad, and fruit were pretty low. The total content of Na and K and the Na/K ratio of elementary school meals were 974 mg, 378 mg and 2.7, respectively, and those in junior high school meals was 1,466 mg, 528 mg and 3.0. The results show that most school meals provide a significant amount of Na but significantly small amounts of K, as suggested by the Dietary Reference Intakes for Koreans.

Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus) (느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究))

  • Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.150-184
    • /
    • 1978
  • Nutritional characteristics and physio-chemical properties of mycelial growth and fruitbody formation of oyster mushroom(Pleurotus ostreatus)in synthetic media, the curtural condition for the commerical production in the rice straw and poplar sawdust media, and the changes of the chemical components of the media and mushroom during the cultivation were investigated. The results can be summarized as follows: 1. Among the carbon sources mannitol and sucrose gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while lactose and rhamnose gave no mycelial growth. Also, citric acid, succinic acid, ethyl alcohol and glycerol gave poor fruit-body formation, and acetic acid, formic acid, fumaric acid, n-butyl alcohol, n-propyl alcohol and iso-butyl alcohol inhibited mycelial growth. 2. Among the nitrogen sources peptone gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while D,L-alanine, asparatic acid, glycine and serine gave very poor fruit-body formation, and nitrite nitrogens, L-tryptophan and L-tyrosine inhibited mycelial growth. Inorganic nitrogens and amino acids added to peptone were effective for fruit-body growth, and thus addition of ammonium sulfate, ammonium tartarate, D,L-alanine and L-leucine resulted in about 10% increase fruit-body yield. L-asparic acid about 15%, L-arginine about 20%, L-glutamic acid, and L-lysine about 25%. 3. At C/N ratio of 15.23 fruit-body formation was fast, but the yield decreased, and at C/N ratio of 11.42 fruit-body formation was slow, but the yield increased. Also, at the same C/N ratio the higher the concentration of mannitol and petone, the higher yield was produced. Thus, from the view point of both yield of fruit-body and time required for fruiting the optimum C/N ratio would be 30. 46. 4. Thiamine, potassium dihydrogen phosphate and magnecium sulfate at the concentration of $50{\mu}g%$. 0.2% and 0.02-0.03%, respectively, gave excellent mycelial and fruit-body growth. Among the micronutrients ferrous sulfate, zinc sulfate and manganese sulfate showed synergetic growth promoting effect but lack of manganese resulted in a little reduction in mycelial and fruit-body growth. The optimum concentrati on of each these nutrients was 0.02mg%. 5. Cytosine and indole acetic acid at 0.2-1mg% and 0.01mg%, respectively, increased amount of mycelia, but had no effect on yield of fruit-body. The other purine and pyrimidine bases and plant hormones also had no effect on mycelial and fruit-belly yield. 6. Illumination inhibited mycelial growth, but illumination during the latter part of vegetative growth induced primordia formation. The optimum light intensity and exposure time was 100 to 500 lux and 6-12 hours per day, respectively. Higher intensity of light was injurous, and in darkness only vegetative growth without primordia formation was continued. 7. The optimum temperature for mycelial growth was $25^{\circ}C$ and for fruit-body formation 10 to $15^{\circi}C$. The optimum pH range was from 5.0 to 6.5. The most excellent fry it-body formation were produced from the mycelium grown for 7 to 10 days. The lesser the volume of media, the more rapid the formation of fruit-body; and the lower the yield of fruit-body; and the more the volume of media, the slower the formation of fruit-body, and the higher the yield of fruit-body. The primordia formation was inhibited by $CO_2$. 8. The optimum moisture content for mycelial growth was over 70% in the bottle media of rice straw and poplar sawdust. 10% addition of rice bran to the media exhibited excellent mycelial growth and fruit-body formation, and the addition of calciumcarbonate alone was effective, but the addition of calcium carbonate was ineffective in the presence of rice bran. 9. In the cultivation experiments the total yield of mushroom from the rice straw media was $14.99kg/m^2$, and from the sawdust media $6.52kg/m^2$, 90% of which was produced from the first and second cropping period. The total yield from the rice straw media was about 2.3 times as high as that from the sawdust media. 10. Among the chemical components of the media little change was observed in the content of ash on the dry weight basis, and organic matter content decreased as the cultivation progressed. Moisture content, which was about 79% at the time of spawning, decreased a little during the period of mycelial propagation, after which no change was observed. 11. During the period from spawning to the fourth cropping about 16.7% of the dry matter, about 19.3% of organic matter, and about 40% of nitrogen were lost from the rice straw media; about 7.5% of dry mallet, about 7.6% of organic matter, and about 20% of nitrogen were lost from the sawdust media. For the production of 1kg of mushroom about 232g of organic matter and about 7.0g of nitrogen were consumed from the rice straw media; about 235g of organic matter and about 6.8g of nitrogen were consumed from the sawdust media, 1㎏ of mushroom from either of media contains 82.4 and 82.3g of organic matter and 5.6 and 5.4g of nitrogen, respectively. 12. Total nitrogen content of the two media decreased gradually as the cultivation progressed, and total loss of insoluble nitrogen was greater than that of soluble nitrogen. Content of amino nitrogen continued to increase up to the third cropping time, after which it decreased. 13. In the rice straw media 28.0 and 13.8% of the total pentosan and ${\alpha}$-cellulose, respectively, lost during the whole cultivation period was lost during the period of mycelial growth; in the sawdust media 24.1 and 11.9% of the total pentosan and ${\alpha}$-cellulose, respectively, was lost during the period of mycelial growth. Lignin content in the media began to decrease slightly from the second cropping time, while the content of reduced sugar, trehalose and mannitol continued to increase. C/N ratio of the rice straw media decreased from 33.2 at spawining to 30.0 at ending; that of the sawdust media decreased from 61.3 to 60.0. 14. In both media phosphorus, potassium, manganese and zinc decreased, at magnesium, calcium and copper showed irregular changes, and iron had a tendency to be increased. 15. Enzyme activities are much higher in the rice straw media than in the sawdust media. CMC saccharifying and liquefying activity gradually increased from after mycelial propagation to the second cropping, after which it decreased in both media. Xylanase activity rapidly and greatly increased during the second cropping period rather than the first period. At the start of the third cropping period the activity decreased rapidly in the rice straw media, which was not observed in the sawdust media. Protease activity was highest after mycelial propagation, after which it gradually decreased. The pH of the rice straw media decreased from 6.3 at spawning to 5.0 after fourth cropping; that of the sawdust media decreased from 5.7 to 4.9. 16. The contents of all the components except crude fibre of the mushroom from the rice straw media were higher than those from the sawdust media. Little change was observed in the content of the components of mushroom cropped from the first to the third period, but slight decrease was noticed at the fourth cropping.

  • PDF