• Title/Summary/Keyword: 광중합 레진

Search Result 281, Processing Time 0.023 seconds

Effect of glycerin on the surface hardness of composites after curing (글리세린이 복합레진의 중합 후 표면경도에 미치는 영향)

  • Park, Hyun-Hee;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2011
  • Objectives: The purpose of this study was to examine the effect of glycerin topical application on the surface hardness of composite after curing. Materials and Methods: A composite (Z-250, 3M ESPE) was packed into a disc-shaped brass mold and light cured according to one of the following protocols. Group 1 (control) was exposed to air and light cured for 40 sec, group 2 was covered with a Mylar strip and light cured for 40 sec, group 3 was surface coated with glycerin and light cured for 40 sec, and group 4 was exposed to air and light cured for 20 sec and then surface coated with glycerin and cured for additional 20 sec. Twenty specimens were prepared for each group. The surface hardnesses of specimens were measured with or without polishing. Five days later, the surface hardness of each specimen was measured again. Data were analyzed by three-way ANOVA and Tukey's post hoc tests. Results: The surface hardnesses of the unpolished specimens immediately after curing decreased in the following order: group 2 > 3 > 4 > 1. For the polished specimens, there was no significant difference among the groups. Within the same group, the hardness measured after five days was increased compared to that immediately after curing, and the polished specimens showed greater hardness than did the unpolished specimens. Conclusions: The most effective way to increase the surface hardness of composite is polishing after curing. The uses of a Mylar strip or glycerin topical application before curing is recommended.

Evaluation of mechanical properties of several dual-cure resin cements by curing modes (중합방법에 따른 여러 이중중합 레진 시멘트의 기계적 성질 평가)

  • Kim, Soo-Yeon;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the mechanical properties of several dual-cure cements by different curing modes. Materials and Methods: One resin-modified glass ionomer cement (FujiCEM 2), two conventional dual-cure resin cements (RelyX ARC, Multilink N), and two dual-cure self-adhesive resin cements (RelyX U200, G-CEM LinkAce) were used. To evaluate the influence of the curing methods, each cements divided into four conditions (n = 20); Condition 1: self-curing for 10 minutes, Condition 2: immediate after 20 seconds light-curing, Condition 3: 24 hours after self-curing, Condition 4: 24 hours after light-curing. The compressive strength and diametral tensile strength were measured with a universal testing machine. All data were statistically analyzed using t-test, one-way ANOVA and Scheffe's test. Results: The results showed the compressive strength and diametral tensile strength after 24 hours in all curing modes were higher than immediate except RelyX ARC light-cured and Multilink N light-cured. The FujiCEM 2 showed lowest values (P < 0.05). Conclusion: The outcome was cement-depend, but there is no significant difference about compressive strength and diametral tensile strength between dual-cure self-adhesive resin cements and conventional resin cements. And this result will be used as a base line data selecting resin cement for favorable long-term prognosis.

A NEW METHOD TO MEASURE THE LINEAR POLYMERIZATION SHRINKAGE OF COMPOSITES USING A PARTICLE TRACKING METHOD WITH COMPUTER VISION (컴퓨터 시각과 입자 추적 방법을 이용한 복합레진의 선형중합수축 측정의 새로운 방법)

  • Lee, In-Bog;Min, Sun-Hong;Seo, Deog-Gyu;Kim, Sun-Young;Kwon, Young-Chul
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.180-187
    • /
    • 2010
  • Since the introduction of restorative dental composites, their physical properties have been significantly improved. However, polymerization shrinkage is still a major drawback. Many efforts have been made to develop a low shrinking composite, and silorane-based composites have recently been introduced into the market. In addition, many different methods have been developed to measure the polymerization shrinkage. In this study, we developed a new method to measure the linear polymerization shrinkage of composites without direct contact to a specimen using a particle tracking method with computer vision. The shrinkage kinetics of a commercial silorane-based composite (P90) and two conventional methacrylate-based composites (Z250 and Z350) were investigated and compared. The results were as follows: 1. The linear shrinkage of composites was 0.33-1.41%. Shrinkage was lowest for the silorane-based (P90) composite, and highest for the flowable Z350 composite. 2. The new instrument was able to measure the true linear shrinkage of composites in real time without sensitivity to the specimen preparation and geometry.

Evaluation of New LED Curing Light on Resin Composite Polymerization (발광 다이오드 광중합기의 복합레진 중합 평가)

  • Kang, Jieun;Jun, Saeromi;Kim, Jongbin;Kim, Jongsoo;Yoo, Seunghoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.2
    • /
    • pp.152-156
    • /
    • 2014
  • The purpose of this study is to compare efficiency of broad spectrum LEDs ($VALO^{(R)}$, Ultradent, USA) with conventional LED curing lights ($Elipar^{TM}$ Freelight 2, 3M ESPE, USA) using a microhardness test. The light curing units used were $VALO^{(R)}$ in three different modes and $Elipar^{TM}$ Freelight 2. The exposure time was used according to the manufacturer's instructions. After cured resin specimens were stored in physiological saline at $37^{\circ}C$ for 24 hours, microhardness was measured using Vickers microhardness tester. The microhardness of upper and lower sides of the specimens were analyzed separately by the ANOVA method (Analysis of Variance) with a significance level set at 5%. At upper side of resin specimens, an increased microhardness was observed in the broad spectrum LED curing light unit with a high power mode for 4 seconds and plasma emulation mode for 20 seconds (p < 0.05). However, at the lower side of resin specimens, there were no significant differences in microhardness between broad spectrum LED curing light unit and conventional LED curing light unit.

Effects of the color components of light-cured composite resin before and after polymerization on degree of conversion and flexural strength (광중합형 복합레진의 중합 전, 후의 색 성분이 중합률과 굴곡강도에 미치는 영향)

  • Yoo, Ji-A;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.324-335
    • /
    • 2011
  • Objectives: This study investigated the effects of the color components of light-cured composite resin before and after polymerization on degree of conversion (DC) and biaxial flexural strength (FS). Materials and Methods: Four enamel shades (A1, A2, A3, A4) and two dentin shades (A2O, A3O) of Premisa (Kerr Co.) and Denfil (Vericom Co.) were evaluated on their CIE $L^*,\;a^*,\;b^*$ color components using the spectrophotometer before curing, after curing and at 7 day. The DC of same specimens were measured with Near-infrared spectrometer (Nexus, Thermo Nicolet Co.) at 2 hr after cure and at 7 day. Finally, the FS was obtained after all the other measurements were completed at 7 day. The correlations between each color component and DC and FS were evaluated. Results: The light-curing of composite resin resulted in color changes of Premisa in red-blue direction and Denfil in green-blue direction. The DC and FS were affected by product, time and shade (3-way ANOVA, p < 0.05) and product and shade (2-way ANOVA, p < 0.05), respectively. Premisa only showed a significant correlation between the DC and CIE $a^*$ component - before and after polymerization (Pearson product moment correlation, p < 0.05). The FS of Premisa showed significant negative correlations with CIE $a^*$ and CIE $b^*$ components. Conclusions: The DC and FS of the light-curing composite resin were affected by the color components of the material before and after polymerization.

Shear bond strength of orthodontic adhesive to amalgam surface using light-cured resin (광중합형 레진으로 아말감 면에 브라켓 접착 시 전단결합강도)

  • Cho, Ji-Young;Lee, Dong-Yul;Lim, Yong-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.443-450
    • /
    • 2005
  • This study was performed to compare the shear bond strength of orthodontic adhesive to amalgam according to different light sources (halogen-based light and light emitting diode (LED)) and amalgam surface treatments. Ninety extracted human premolars were randomly divided into 6 groups (4 experimental and 2 control groups) of 15 by light sources and surface treatments. Orthodontic brackets were bonded and shear bond strength was measured with an Instron universal testing machine. The findings were as follows: The bond strength of adhesive to amalgam surface was 3-5.5 MPa which was lower than that of acid-etched enamel (19 MPa) control. In the sandblasted amalgam surface, the shear bond strength of the halogen light group was higher than that of the LED group (p < 0.05) but. in the non-treated amalgam surface. there was no significant difference in the shear bond strength according to the light sources (p> 0.05). Within the same light source. sandblasting had no significant effect on the shear bond strength of the adhesive bonded to amalgam surface (p > 0.05). There was no significant difference in shear bond strength according to the light sources in acid-etched enamel control groups. This results suggest that there can be a limit in using light curing adhesives when brackets are bonded to an amalgam surface. Additional clinical studies are necessary before routine use of halogen light and LED light curing units can be recommended in bonding brackets to an amalgam surface.

COMPARATIVE ENAMEL BOND STRENGTH BETWEEN LIGHT-AND DUAL-CURED COMPOSITES BONDED BY SELF-ETCHING ADHESIVES (자가 산부식 접착제로 접착된 광중합과 이원중합 복합레진의 법랑질 결합강도 비교)

  • Cho, Young-Gon;Yoo, Sang-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • This study compared the microshear bond strength (${\mu}SBS$) of light-cured and dual-cured composites to enamel bonded with three self-etching adhesives. Crown segments of extracted human molars were cut mesiodistally, and 1 mm thickness of specimen was made. They were assigned to three groups by used adhesives: Xeno group (Xeno III), Adper group (Adper Prompt L-Pop), and AQ group (AQ Bond). Each adhesive was applied to cut enamel surface as per manufacturer's instruction. Light-cured (Filtek Z 250) or dual-cured composite (Luxacore) was bonded to enamel of each specimen using Tygon tube. After storage in distilled water for 24 hours, the bonded specimens were subjected to ${\mu}SBS$ testing with a crosshead speed of 1 mm/minute. The mean ${\mu}SBS$ (n = 20 for each group) was statistically compared using two-way ANOVA, Tukey HSD, and t test at the 0.05 probability level, The results of this study were as follows ; 1. The ${\mu}SBS$ of light-cured composite was significantly higher than that of dual-cured composite when same adhesive was applied to enamel. 2. For Z 250, the ${\mu}SBS$ of AQ group ($9.95{\pm}2.51 MPa$) to enamel was significantly higher than that of Adper soup ($6.74{\pm}1.80 MPa$), but not significantly different with Xeno group ($7.73{\pm}2.01 MPa$). 3. For Luxacore, the ${\mu}SBS$ of Xeno group ($5.19{\pm}1.32\;MPa$) to enamel was significantly higher than that of Adper group ($3.41{\pm}1.19\;MPa$), but not significantly different with AQ group ($4.50{\pm}0.96\;MPa$).

EFFECT OF SOFT-START LIGHT CURING ON THE POLYMERIZATION AND THE CONTRACTION STRESS OF COMPOSITE RESIN (완속기시(Soft-start) 광조사 방식이 복합레진의 중합 및 수축응력에 미치는 효과)

  • Wee, You-Min;Oh, You-Hyang;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.332-343
    • /
    • 2005
  • The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at $400\;mw/cm^2$, plasma arc light curing for 6 seconds at $1300\;mW/cm^2$ and LED light curing for 10 seconds at $7The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at . For the soft-start curing method ; 2 seconds light exposure at $650\;mW/cm^2$ followed by 3 seconds at $1300\;mW/cm^2$ and exponential increase with 5 seconds followed by 10 seconds at $700\;mW/cm^2$ were used. Contraction stress was measured using strain gauge method and Vickers hardness was measured 24 hours after polymerization at the top and bottom of specimens. Resin-acrylic interfaces were observed using a scanning electron microscope(SEM). The results of present study can be summarized as follows: 1. Contraction stresses at 10 min after polymerization were significantly reduced with the soft-start curing both in plasma and LED light sources(P<0.05). 2. Plasma light curing with soft-start resulted in not only the lowest contraction stress, but also the lowest hardness(P<0.05) 3. LED light curing with soft-start showed lower contraction stress than the one-step continuous halogen and LED light curing(P<0.05). 4. Microhardness of specimens cured by LED light with soft-start was equivalent to that of cured by the one-step continuous halogen and LED light(P>0.05). 5. Curing by LED light with soft-start and conventional halogen light resulted in better marginal sealing than plasma light and one-step LED light curing.

  • PDF

A STUDY ON THE CHANGES IN POLYMERIZATION OF LIGHT-ACTIVATED COMPOSITE RESIN WITH VARIOUS EXPOSURE TIME AND DISTANCE (광중합형 복합레진의 중합시간과 거리에 따른 중합도의 변화)

  • Ahn, Myung-Ki;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.293-299
    • /
    • 2001
  • The aim of this study was to evaluate the effect of the distance of the light tip to the surface of restoration and exposure time on the polymerization of surface and 2mm below the surface of light-activated composite resins. Two light-activated composite resins were used. From the experiment, the following results were obtained. 1. Relative light intensity rapidly decreased when distance of the light tip to the surface of material is more than 2mm(p<0.05). 2. In all groups, microhardness was increased according to the increase of relative light intensity and exposure time(p<0.05). 3. The distance of the light tip to the surface of restoration and exposure time more affected 2mm below the surface rather than the surface(p<0.05). 4. Although exposure time was increased, difference of microhardness of the 2mm below the surface with the distance of the light tip to the surface of restoration was relatively high in Z100 between below 4mm and other groups and Z250 between below 2mm and other groups(p<0.05).

  • PDF

EFFECT OF STEP CURING ON THE CONTRACTION STRESS AND MARGINAL ADAPTATION OF RESIN RESTORATION (단계별 광중합 방식이 복합레진 수복물의 수축 응력과 변연 접합도에 미치는 영향)

  • Park, Jong-Whi;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.221-232
    • /
    • 2006
  • The purpose of this study was to investigate the effect of step-curing mode on polymerization shrinkage and contraction of composite resin restoration. Class I cavities were prepared on the extracted human premolars. The cavities were ailed with Filtek $Z-250^{TM}$ (hybrid resin, 3M ESPE, USA) and Filtek $flow^{TM}$ (flowable resin, 3M ESPE, USA) and cured with one of the following irradiation modes; Halogen 40sec with continuous curing, LED 10sec with continuous curing, and LED 13sec with step-curing. Contraction stress was measured with strain gauge which was connected to TML $Datalogger^{TM}$ (TDS-102, SOKKI, Japan) and resin-dentin interfaces were observed by scanning electron microscope. The results of present study can be summarized as follows : 1. Composite resin restoration showed transient expansion just after irradiation of curing light. Contraction stress was increased rapidly at the early phase of polymerization and reduced slowly as time elapsed (P<0.05) 2. $Filtek\;flow^{TM}$ showed lower contraction stress than Filtek $Z-250^{TM}$ regardless of curing modes. 3. LED step-curing mode showed lowest contraction stress in Filtek $Z-250^{TM}$ compared with other curing modes(P<0.05). 4. LED step-curing mode showed lowest contraction stress in $Filtek\;flow^{TM}$ compared with other curing modes(P<0.05), but difference in contraction stress was not so greate as in $Filtek\;Z-250^{TM}$. 5. Polymerization of composite resin by LED light with step-curing mode and halogen light with continuous ode resulted in better marginal sealing than LED light with continuous mode.

  • PDF