• Title/Summary/Keyword: 광중합 레진

Search Result 281, Processing Time 0.02 seconds

HARDNESS OF COMPOSITE RESIN CURED BY HIGH INTENSITY HALOGEN LIGHT (고강도 할로겐광으로 중합한 복합레진 수복재의 경도)

  • Park, Jong-Seok;Lee, Kwang-Hee;Kim, Dae-Eup;Kim, Seong-Hyeong;Ahn, Ho-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.471-479
    • /
    • 2001
  • The purpose of this study was to compare the effect of the high intensity halogen light $(850\sim1000mW/cm^2)$ with that of the conventional halogen light $(400mW/cm^2)$ on the hardness of composite resin. Three resin composites (Z-100, 3M, U.S.A. : Tetric Ceram, Vivadent, Liechtenstein; SureFil, Dentsply, U.S.A.) were filed in the stainless steel moulds which were 4mm in diameter and 2, 3, 4, and 5mm in depth, respectively. They were cured under the four different modes : (1) conventional mode, 40 seconds at $400mW/cm^2$; (2) 'ramp' mode, 10 seconds at 100 to $1000mW/cm^2$ plus 10 seconds at $1000mW/cm^2$; (3) 'boost' mode, 10 seconds at $1000mW/cm^2$; and (4) 'standard' mode, 20 seconds at $850mW/cm^2$. The surface hardnesses of the top and the bottom of the resin samples were measured with a microhardness tester (MXT70, Matsuzawa, Japan). The top surface hardness was not significantly different among the curing modes. The bottom surface hardness was generally the highest in the conventional mode and the lowest in the high intensity boost mode. There was no significant difference in the bottom surface hardness between the conventional mode and the high intensity standard mode in 2mm depth. The results suggest that the curing time of the high intensity halogen light $(850mW/cm^2)$ should be at least 20 seconds to produce the equal level of the bottom surface hardness of 2mm resin composite as compared to the hardness produced by the conventional halogen light $(400mW/cm^2)$.

  • PDF

Evaluation of polymerization shrinkage stress in silorane-based composites (Silorane계 복합레진의 중합수축응력의 평가)

  • Ryu, Seung-Ji;Cheon, Ji-Hoon;Min, Jeong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.3
    • /
    • pp.188-195
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate the polymerization shrinkage stress among conventional methacrylate-based composite resins and a silorane-based composite resin. Materials and Methods: The strain gauge method was used for the determination of polymerization shrinkage strain. Specimens were divided by 3 groups according to various composite materials. Filtek Z-250 (3M ESPE) and Filtek P-60 (3M ESPE) were used as a conventional methacrylate-based composites and Filtek P-90 (3M ESPE) was used as a silorane-based composites. Measurements were recorded at each 1 second for the total of 800 seconds including the periods of light application. The results of polymerization shrinkage stress were statistically analyzed using One way ANOVA and Tukey test (p = 0.05). Results: The polymerization shrinkage stress of a silorane-based composite resin was lower than those of conventional methacrylate-based composite resins (p < 0.05). The shrinkage stress between methacrylate-based composite resin groups did not show significant difference (p > 0.05). Conclusions: Within the limitation of this study, silorane-based composites showed lower polymerization shrinkage stress than methacrylate-based composites. We need to investigate more into polymerization shrinkage stress with regard to elastic modulus of silorane-based composites for the precise result.

A Study on Color Differences Between Composite Resins and Shade Guides (복합레진과 shade guide의 색차에 관한 연구)

  • Kim, Hee-Sun;Um, Chung-Moon;Kahng, Myong-Whai
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.107-120
    • /
    • 1996
  • 복합레진은 조작이 용이하고 강도가 우수하며 중합시간이 짧고 법랑질과 상아질에 접착이 가능하며 연마성이 뛰어나고 자연스러운 색상을 나타내므로 심미적 수복에 가장 일반적으로 선택되는 재료의 하나이다. 대부분의 복합레진 kit에는 shade guide가 포함되어 있어 이를 기준으로 중합된 후의 복합레진 색조를 예상하여 선택하게 된다. 그러나 이러한 shade guide들은 대개 복합레진이 아닌 plastic으로 제조된 것으로 중합된 복합레진의 실제 색조와는 차이가 생기게 되며 결국 shade guide 자체의 문제점으로 인해 이상적인 색조선택이 어려워진다. 이에 본 연구에서는 국내에 시판되고 있는 5종의 복합레진 제품을 선정하여 분광 광도계를 이용해서 shade guide와 중합된 복합레진 사이의 색조차이를 측정, 비교 연구하였다. 직경 16mm. 두께 1.6mm의 plastic mold에 5종의 광중합형 복합레진(Z100, Prisma TPH, Tetric, Silux Plus, Herculite XR)을 충전하고 응축기에 넣어 압축한 후 제조사의 지시에 따라 광중합기로 중합시킨 후 mold에서 시편을 제거하여 보관했다가 젖은 sandpaper 상에서 순차적으로 연마하였다. shade guide는 step부분을 갈아내어 복합레진 시편과 동일한 두께로 만든후 연마하였다. 분광광도계에 shade guide를 넣고 CIE illuminant D65 하에서 spectral reflectance를 측정하고 해당 색조의 복합레진 시편도 통일한 방법으로 측정하고 $L^*$, $a^*$, $b^*$값과 ${\Delta}E^*$값을 얻은후 분석하여 다음과 같은 결과를 얻었다. 1. Z100의 D3, A3, B2 shade와 Prisma TPH의 B2 shade를 제외한 모든 시편에서 shade guide와 복합레진간에 육안으로 인지할 수 있는 색차(${\Delta}E^*$ > 1.0)가 관찰되었다. 2. 평균적으로 Z100이 가장 적은 색차를 나타내었고 Prisma TPH, Tetric, Silux Plus, Herculite XR 순으로 색차가 증가하였다. 3. Prisma TPH의 A2 shade. Tetric의 W shade. Silux Plus의 YB, U shade, Herculite XR의 L, LY shade는 ${\Delta}E^*$값이 3.3 이상으로 나타났다. 4. Z100, Prisma TPH, Tetric, Silux Plus에서는 복합레진보다 shade guide가 더 높은 $L^*$값을 보이는 경향이 나타났으며, Herculite XR에서만 복합레진이 더 높은 $L^*$값을 나타냈다. 5. 모든 시편에서 $b^*$ 값은 (+)로 관찰되었고, Z100, Prisma TPH, Tetric, Silux Plus의 shade guide는 복합레진에 비해 높은 $b^*$값을 보였다. 6. 모든 시편에서 $a^*$값은 (-)로 관찰되었고. Herculite XR 및 Silux Plus에서는 복합레진이 shade guide 에 비 해 낮은 $a^*$값을 나타냈다.

  • PDF

THE CHANGE OF THE INITIAL DYNAMIC VISCO-ELASTIC MODULUS OF COMPOSITE RESINS DURING LIGHT POLYMERIZATION (광중합 복합레진의 중합초기 동적 점탄성의 변화)

  • Kim, Min-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.450-459
    • /
    • 2009
  • The aim of this study was to measure the initial dynamic modulus changes of light cured composites using a custom made rheometer. The custom made rheometer consisted of 3 parts: (1) a measurement unit of parallel plates made of glass rods, (2) an oscillating shear strain generator with a DC motor and a crank mechanism, (3) a stress measurement device using an electromagnetic torque sensor. This instrument could measure a maximum torque of 2Ncm, and the switch of the light-curing unit was synchronized with the rheometer. Six commercial composite resins [Z-100 (Z1), Z-250 (Z2), Z-350 (Z3), DenFil (DF), Tetric Ceram (TC), and Clearfil AP-X (CF)] were investigated. A dynamic oscillating shear test was undertaken with the rheometer. A certain volume ($14.2\;mm^3$) of composite was loaded between the parallel plates, which were made of glass rods (3 mm in diameter). An oscillating shear strain with a frequency of 6 Hz and amplitude of 0.00579 rad was applied to the specimen and the resultant stress was measured. Data acquisition started simultaneously with light curing, and the changes in visco-elasticity of composites were recorded for 10 seconds. The measurements were repeated 5 times for each composite at $25{\pm}0.5^{\circ}C$. Complex shear modulus G*, storage shear modulus G', loss shear modulus G" were calculated from the measured strain-stress curves. Time to reach the complex modulus G* of 10 MPa was determined. The G* and time to reach the G* of 10 MPa of composites were analyzed with One-way ANOVA and Tukey's test ($\alpha$ = 0.05). The results were as follows. 1. The custom made rheometer in this study reliably measured the initial visco-elastic modulus changes of composites during 10 seconds of light curing. 2. In all composites, the development of complex shear modulus G* had a latent period for $1{\sim}2$ seconds immediately after the start of light curing, and then increased rapidly during 10 seconds. 3. In all composites, the storage shear modulus G" increased steeper than the loss shear modulus G" during 10 seconds of light curing. 4. The complex shear modulus of Z1 was the highest, followed by CF, Z2, Z3, TC and DF the lowest. 5. Z1 was the fastest and DF was the slowest in the time to reach the complex shear modulus of 10 MPa.

SHEAR BOND STRENGTH AND FAILURE PATTERNS ACCORDING TO THE MATERIAL OF RESIN BASE IN INDIRECT BRACKET BONDING (브라켓 간접부착시 레진 베이스의 재료에 따른 전단결합강도와 파절양상 비교)

  • Jeon, Man-Bae;Hwang, Hyeon-Shik;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.28 no.2 s.67
    • /
    • pp.277-284
    • /
    • 1998
  • The purpose of this study was to evaluate the propriety of making use of the light-cured resin base in indirect bracket bonding technique by study of shear bond strength and failure patterns according to the material of resin base. Metal brackets were bonded to the stone models of specimens involving bovine lower incisor with chemical-cured(Excel), light-cured(Light-Bond) and thermal-cured(Therma-Cure) resin. They were transferred to the specimens and bonded using sealant. The shear bond strength was tested on Instron. After bracket removal, the bracket base was examined and assessed with the adhesive remnant index(ARI). The results were as follows : 1. No significant differences in shear bond strength were found among the three groups (P>0.05). 2. No significant differences in ARI score were found among the three groups (P>0.05). The above results suggest that light-cured resin base in addition to chemical-cured and thermal-cured resin bases is useful in the indirect bonding technique.

  • PDF

THE COMPARISON OF LIGHT-CURED COMPOSITE RESIN POLYMERIZATION BY FTIR (FTIR을 이용한 복합레진의 중합도 비교)

  • Lee, Ju-Hyun;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.245-253
    • /
    • 2003
  • The degree of conversion of cross-linked polymer has great importance in determining the physical and mechanical properties, and biocompatibility. Therefore, this study examined the comparison of light-cured composite resin polymerization of various light-curing systems composed of plasma arc, halogen, LED curing units and pluse-delay curing with FTIR. From this experiment, The following results were obtained : 1. From FTIR, the degree of conversion(DC) of composite resin was 34.52-49.31%, DC of composite resin used in Flipo was $39.36{\pm}1.22%$, CrediII $45.64{\pm}1.34%$, XL3000 $43.48{\pm}1.34%$, VIP(mode 4) $44.31{\pm}0.72%$, LUXOMAX $49.31{\pm}2.37%$, Elipar Freelight $44.51{\pm}0.62%$ and $34.52{\pm}0.85%$ in pulse-delay curing. 2. The degree of conversion of composite resin in each light-curing unit was highest DC of the LUXOMAX system, lowest DC of the pulse-delay curing. 3. Compared with other curing system, Flipo, LUXOMAX, and pulse-delay curing were significant difference(p<0.05). 4. In same curing method group, the differences of each light-curing unit were no significace in halogen(conventional) curing method(p>0.05), but significance in plasma arc curing and LED curing method(p<0.05).

  • PDF

EFFECT OF CURING METHODS OF RESIN CEMENTS ON BOND STRENGTH AND ADHESIVE INTERFACE OF POST (레진시멘트의 중합방법이 포스트의 결합강도와 접착계면에 미치는 영향)

  • Kim, Mun-Hang;Kim, Hae-Jung;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.103-112
    • /
    • 2009
  • The purpose of this study was to compare the effect of curing methods of adhesive resins and resin cements in the root canal. Crown portions of 32 single-rooted mandibular premolars were removed. Routine endodontic treatment was done, and 9 mm deep post spaces were prepared within root canals. No.3 FRC Postec posts (Ivoclar-Vivadent AG, Liechtensteih) were cemented in the post spaces by self-(SC) or light-curing (LC) using two dual-cured adhesives (Adper Scotchbond multi-purpose plus and Exite DSC )and resin cements (RelyX ARC and Variolink II). They were assigned to 4 groups (n=8): R-SC, R-LC, V-SC, V-LC group. After stored in distilled water for 24 hours, each root was transversally sectioned with 1.5 mm thick and made three slices. The specimens were subjected to push-out test in a universal testing machine (EZ Test, Shimadzu Co., Japan) with a crosshead speed of 1 mm/min. The data were analyzed with repeated ANOVA and one-way ANOVA. Also the interface of post-resin cement and resin cement-canal wall of each group was observed under FE-SEM. When fiber posts were cemented into the root canal using total-etch adhesives, the bond strength and adaptation between post and root canal dentin was affected by curing method. Self-cure of adhesives and resin cements showed higher bond strength and closer adaptation than light-cure of them.

The Effect of Bonding Resin on Bond Strength of Dual-Cure Resin Cements (접착레진의 부가도포가 레진 시멘트의 결합강도에 미치는 영향에 대한 연구)

  • Kim, Duck-Su;Park, Sang-Hyuk;Choi, Gi-Woon;Choi, Kyung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.426-436
    • /
    • 2007
  • The objective of this study is to evaluate the effect of an additional application of bonding resin on the bond strength of resin luting cements in both the light-cure (LC) and self-cure (SC) modes by means of the ${\mu}TBS$ tests. Three combinations of One-Step Plus with Choice, Single Bond with Rely X ARC, and One-Up Bond F with Bistite II were used. D/E resin and Pre-Bond resin were used for the additional application. Twelve experimental groups were made. Three mandibular $3^{rd}$ molars were used in each group. Indirect composite blocks were cemented on the tooth surface. $1\;{\times}\;1\;mm^2$ dentin-composite beam for ${\mu}TBS$ testing were made and tested. When total-etching dentin adhesives were used, an additional application of the bonding resin increased the bond strength (P < 0.05). However, this additional application didn't influence the bond strength of self-etching dentin adhesives (P > 0.05). In conclusion, the results suggest that an additional application of the bonding resin increases bond strength and enhances quality of bonding when using total-etching dentin adhesives.

IN VITRO PULP CHAMBER TEMPERATURE CHANGE DURING COMPOSITE RESIN CURING WITH VARIOUS LIGHT SOURCES (복합레진 중합 광원에 따른 치수강 온도 변화에 대한 생체외 연구)

  • Lee, Ji-Young;Kim, Dae-Eop;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.1
    • /
    • pp.85-91
    • /
    • 2004
  • The purpose of this study was to observe in vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. The kinds of light-curing sources were plasma arc light(P), low heat plasma arc light, traditional low intensity halogen light, low intensity LED(L-LED), and high intensity LED(H-LED). Temperature at the tip of light guide was measured by a digital thermometer using K-type thermocouple. Occlusal cavities$(2{\times}2{\times}1.5mm)$ were so prepared in extracted human premolars as to the remaining dentin thickness was 1mm. Dentin adhesive was applied to all cavities. Experimental groups consisted of no base group, ionomer glass base group, and calcium hydroxide base group. Temperature before and after resin filling was measured. Temperature at the light guide tip was the highest with P and the lowest L-LED. Temperature before resin filling was the highest with H-LED and the lowest with L-LED. Temperature after resin filling was the highest with H-LED and the lowest with L-P and with L-LED. The lining of base partially reduced the temperature rise.

  • PDF

Polymerization Shrinkage Distribution of a Dental Composite during Dental Restoration Observed by Digital Image Correlation Method (디지털 이미지 상관법을 이용한 치과용 복합레진의 수복 시 중합수축분포 관찰)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.393-398
    • /
    • 2017
  • The shrinkage distribution of a dental composite (Clearfil AP-X, Kuraray, Japan) used for dental restoration was observed using a digital image correlation method. In order to analyze the shrinkage distribution formed during and after light irradiation, digital images were taken with different photographing conditions for each period. Optimal photographing conditions during LED irradiation were obtained through a preliminary experiment in which the exposure time was applied from 0.15 ms to 0.55 ms in 0.05 ms intervals. The DIC analysis results showed that the strain was non-uniform. For the initial 20 s of light irradiation the composite resin shrank to the level of 50~60% of the final curing shrinkage. Such large shrinkage amount of the composite resin lump affected the tensile stress concentration near the adhesive region between the composite resin and the substrate.