• Title/Summary/Keyword: 광자결정

Search Result 238, Processing Time 0.025 seconds

Enhanced cathode luminescence in $In_xGa_{1-x}N/In_yGa_{1-y}N$ green light emitting diode structure using two-dimensional photonic crystal (2차원 광자 결정을 이용한 $In_xGa_{1-x}N/In_yGa_{1-y}N$ 녹색 발광 다이오드의 음극선 발광 효율 증대)

  • Choi, E.S.;Nguyen, H.P.T.;Doan, H.M.;Kim, S.;Lim, H.;Lee, J.J.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.132-133
    • /
    • 2007
  • $In_xGa_{1-x}N/In_yGa_{1-y}N$ 다중 양자우물 녹색 발광 다이오드에 2차원 광자 결정을 이용하여 음극선 발광의 향상을 관찰 하였다. 정사각형 배열의 2차원 광자 결정의 주기와 격자 상수는 200/500 nm 이고 전자빔 리소그래피로 광자결정 패턴을 제작한 후, 플라즈마 건식 식각법으로 패턴을 구현하였다. 식각 시간의 차이를 둔 구현된 패턴의 홀 깊이는, 각각 ${\sim}69nm,\;{\sim}99nm,\;{\sim}173nm$ 이었다. 전계 방사 주사 현미경 측정 결과, 형성된 홀은 끝이 잘린 역전된 원뿔 모양으로 식각 되었다. 식각 된 홀의 깊이에 따라 광자 결정이 있는 부분이 없는 부분보다 최대 ${\sim}30$배 많은 광자가 검출 됨을 확인하였다.

  • PDF

Normalized characteristics of the photonic bandgaps in two-dimensional photonic crystals with a hexagonal lattice by FDID simulation (FDTD 시뮬레이션을 이용한 육방정계형 2차원 광자결정에서의 광자밴드갭 특성 정규화)

  • Yeo, Jong-Bin;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.38-38
    • /
    • 2009
  • Characteristics of the photonic bandgaps (PBGs) in two-dimensional photonic crystals (2D PCs) with a hexagonal lattice have theoretically studied using a finite difference time domain (FDTD) simulation. In this research, we propose a concept of optical coverage ratio (OCR) as a new structural parameter to determine the PBGs for E-polarized light. The OCR is an optically compensated filling factor. It is possible to normalize the PBGs of 2D PCs by introducing the OCR.

  • PDF

Fabrication of Photonic Crystal Fiber using a Capillary Layer Method (모세관 적층 방법에 의한 광자결정 광섬유의 제작)

  • Cho, Hyung-Su;Chung, Hae-Yang;Kim, Gil-Hwan;Koh, Dong-Yean;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • Photonic crystal fibers(PCFs) with silica cores within an away of air holes have unique properties. Broad band single-mode and the octave-spanning supercontinuum generation, impossible to achieve in classical fibers, can be realized. The design of PCFs is very flexible. There are two parameters to manipulate: air hole diameter, and lattice pitch. We introduced a fabrication process for control of the parameters to obtain endlessly single mode PCF, which is single mode in a large wavelength range, and highly nonlinear PCF. The numerical analysis and experiments are included.

Nanofabrication of InP/InGaAsP 2D photonic crystals using maskless laser holographic method (레이저 홀로그래피 방법과 반응성 이온식각 방법을 이용한 InP/InGaAsP 광자 결정 구조 제작)

  • 이지면;이민수;이철욱;오수환;고현성;박상기;박문호
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.309-312
    • /
    • 2004
  • Two-dimensionally arrayed nanocolumn lattices were fabricated by using double-exposure laser holographic method. The hexagonal lattice was formed by rotating the sample with 60 degree while the square lattice by 90 degree before the second laser-exposure. The size and period of nanocolumns could be controlled accurately from 125 to 145 nm in diameter and 220 to 290 nm in period for square lattice by changing the incident angle of laser beam. The reactive ion etching for a typical time of 30 min using CH$_4$/H$_2$ plasma enhanced the aspect-ratio by more than 1.5 with a slight increase of the bottom width of columns.

Optical Characteristics of Two-dimensional Silicon Photonic Crystal Slab Structures with Air and Silica Cladding (공기 및 실리카 클래딩을 갖는 2차원 실리콘 광자 결정 슬랩 구조의 광학적 특성)

  • Lee, Yoon-Sik;Han, Jin-Kyu;Song, Bong-Shik
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.4
    • /
    • pp.211-216
    • /
    • 2009
  • Much research into two-dimensional (2-D) photonic crystal (PC) structures has been conducted for realization of ultrasmall optical integrated circuits. A 2-D silicon (Si) PC slab structure with air cladding (n=1) is one of the representative structures in 2-D PCs. While air-clad Si PC slab structures have good optical characteristics, their suspension in air can lead to mechanical weakness, making integration with some optical devices difficult. In this paper, we propose improving the mechanical robustness of PC structure by developing a 2-D Si PC structure with symmetric silica cladding (n=1.44) and comparing its optical properties to that of the air-clad structure. First, we investigate the optical properties of a 2-D Si PC slab structure with air cladding by using a 3-D finite difference time domain method. We determined that a photonic bandgap of 330 nm and a non-leaky propagating bandwidth of 100 nm in the optical communication range are possible. Next, we investigate the optical properties of 2-D Si PC slab structures with silica cladding. Even though the refractive index of the silica cladding is higher than that of air, we developed a silica-clad structure with good optical properties: a photonic band gap of approximately 230 nm and a non-leaky propagating bandwidth of 90 nm, comparable to that of the air-clad PC structures.