• Title/Summary/Keyword: 광섬유 팁

Search Result 12, Processing Time 0.014 seconds

Fabrication and Characterization of a Fiber-optic Radiation Sensor for Detection of Tritium (삼중수소 검출용 광섬유 방사선 센서의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Yoo, Wook-Jae;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi;Cho, Young-Ho;Kim, Sin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.4
    • /
    • pp.201-206
    • /
    • 2009
  • In this study, we have fabricated a fiber-optic radiation sensor for detection of tritium using inorganic scintillators and optical fibers. We have tested various kinds of inorganic scintillators such as $Gd_2O_2S$ : Tb, $Y_3Al_5O_{12}$ : Ce, and CsI : Tl to select the most effective sensor tip. In addition, we have measured the scintillating lights using a photomultiplier tube as a function of distance between sensor tips to the source with the different activities of hydride tritium. The final results are compared with those which are obtained using a surface activity monitor.

3-channel Tiled-aperture Coherent-beam-combining System Based on Target-in-the-loop Monitoring and SPGD Algorithm (목표물 신호 모니터링 및 SPGD 알고리즘 기반 3 채널 타일형 결맞음 빔결합 시스템 연구)

  • Kim, Youngchan;Yun, Youngsun;Kim, Hansol;Chang, Hanbyul;Park, Jaedeok;Choe, Yunjin;Na, Jeongkyun;Yi, Joohan;Kang, Hyungu;Yeo, Minsu;Choi, Kyuhong;Noh, Young-Chul;Jeong, Yoonchan;Lee, Hyuk-Jae;Yu, Bong-Ahn;Yeom, Dong-Il;Jun, Changsu
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • We have studied a tiled-aperture coherent-beam-combining system based on constructive interference, as a way to overcome the power limitation of a single laser. A 1-watt-level, 3-channel coherent fiber laser and a 3-channel fiber array of triangular tiling with tip-tilt function were developed. A monitoring system, phase controller, and 3-channel phase modulator formed a closed-loop control system, and the SPGD algorithm was applied. Eventually, phase-locking with a rate of 5-67 kHz and peak-intensity efficiency comparable to the ideal case of 53.3% was successfully realized. We were able to develop the essential elements for a tiled-aperture coherent-beam-combining system that had the potential for highest output power without any beam-combining components, and a multichannel coherent-beam-combining system with higher output power and high speed is anticipated in the future.